Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1562

Question Number 50834    Answers: 0   Comments: 4

Question Number 50829    Answers: 2   Comments: 1

Question Number 50825    Answers: 1   Comments: 0

x^4 =ax^2 +by^2 y^4 =bx^2 +ay^2 solve for x, y. [a ,b∈ R; a, b≠0]

$$\boldsymbol{\mathrm{x}}^{\mathrm{4}} =\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\boldsymbol{\mathrm{by}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{4}} =\boldsymbol{\mathrm{bx}}^{\mathrm{2}} +\boldsymbol{\mathrm{ay}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\:\boldsymbol{\mathrm{y}}.\:\left[\boldsymbol{\mathrm{a}}\:,\boldsymbol{\mathrm{b}}\in\:\boldsymbol{\mathrm{R}};\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\neq\mathrm{0}\right] \\ $$

Question Number 50820    Answers: 1   Comments: 1

Question Number 51822    Answers: 1   Comments: 0

If p and q are the length of perpendicular from the origin to the lines xcos θ−ysin θ=kcos2θ and xsec θ+ycosec θ=k respectively prove that p^2 +4q^2 =k^2

$${If}\:\:{p}\:{and}\:{q}\:\:{are}\:{the}\:{length} \\ $$$${of}\:{perpendicular}\:{from} \\ $$$${the}\:{origin}\:{to}\:{the}\:{lines} \\ $$$${x}\mathrm{cos}\:\theta−{y}\mathrm{sin}\:\:\theta={kcos}\mathrm{2}\theta \\ $$$${and}\:{x}\mathrm{sec}\:\theta+{y}\mathrm{cosec}\:\theta={k} \\ $$$${respectively} \\ $$$${prove}\:{that} \\ $$$${p}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{2}} ={k}^{\mathrm{2}} \\ $$

Question Number 50818    Answers: 1   Comments: 0

If a right angled triangle has same area and double perimeter as that of a circle of unit radius, find the mutually perpendicular sides of the triangle.

$${If}\:{a}\:{right}\:{angled}\:{triangle}\:{has} \\ $$$${same}\:{area}\:{and}\:{double}\:{perimeter} \\ $$$${as}\:{that}\:{of}\:{a}\:{circle}\:{of}\:{unit}\:{radius}, \\ $$$${find}\:{the}\:{mutually}\:{perpendicular} \\ $$$${sides}\:{of}\:{the}\:{triangle}. \\ $$

Question Number 51823    Answers: 0   Comments: 0

Give a proof for : Σ_(n=1) ^k (Π_(n′=0) ^m ( n+n′)) = ((Π_(x=0) ^(m+1) (k+x))/(m+2)) In other terms : (it is the same) Σ_(n=1) ^k n(n+1)(n+2) ... (n+m) = (( k(k+1)(k+2) ... (k+m)(k+m+1) )/(m + 2)) Thank you !!!

$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{Give}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{proof}}\:\boldsymbol{\mathrm{for}}\:: \\ $$$$ \\ $$$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\:\left(\underset{{n}'=\mathrm{0}} {\overset{{m}} {\prod}}\left(\:{n}+\mathrm{n}'\right)\right)\:\:=\:\:\frac{\underset{{x}=\mathrm{0}} {\overset{{m}+\mathrm{1}} {\prod}}\left({k}+{x}\right)}{{m}+\mathrm{2}}\: \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{In}\:\mathrm{other}\:\mathrm{terms}\::\:\left({it}\:{is}\:{the}\:{same}\right) \\ $$$$ \\ $$$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:...\:\left({n}+{m}\right) \\ $$$$\:=\:\frac{\:{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)\:...\:\left({k}+{m}\right)\left({k}+{m}+\mathrm{1}\right)\:}{{m}\:+\:\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:!!! \\ $$

Question Number 50811    Answers: 1   Comments: 2

Question Number 50808    Answers: 2   Comments: 0

Question Number 50806    Answers: 2   Comments: 0

Determine the fourth roots of − 16 , giving the results in polar form and in exponential form Answers: (√2) (1 + j) , (√2) (− 1 + j) , (√2) (− 1 − j), (√2)(1 − j)

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{roots}\:\mathrm{of}\:\:−\:\mathrm{16}\:,\:\:\mathrm{giving}\:\mathrm{the}\:\mathrm{results}\:\mathrm{in}\:\mathrm{polar} \\ $$$$\mathrm{form}\:\mathrm{and}\:\mathrm{in}\:\mathrm{exponential}\:\mathrm{form} \\ $$$$\boldsymbol{\mathrm{Answers}}:\:\:\:\:\:\sqrt{\mathrm{2}}\:\left(\mathrm{1}\:+\:\boldsymbol{\mathrm{j}}\right)\:,\:\:\sqrt{\mathrm{2}}\:\left(−\:\mathrm{1}\:+\:\boldsymbol{\mathrm{j}}\right)\:,\:\:\:\:\:\sqrt{\mathrm{2}}\:\left(−\:\mathrm{1}\:−\:\boldsymbol{\mathrm{j}}\right),\:\:\:\:\sqrt{\mathrm{2}}\left(\mathrm{1}\:−\:\boldsymbol{\mathrm{j}}\right) \\ $$

Question Number 50802    Answers: 2   Comments: 2

Question Number 50796    Answers: 1   Comments: 1

∫1/(1+x^4 )dx=

$$\int\mathrm{1}/\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}= \\ $$

Question Number 50795    Answers: 1   Comments: 1

4+((1−3x)/5)=−((x−5)/2) Sir l could not solve this question plz help me

$$\mathrm{4}+\frac{\mathrm{1}−\mathrm{3x}}{\mathrm{5}}=−\frac{\mathrm{x}−\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{Sir}\:\mathrm{l}\:\mathrm{could}\:\mathrm{not}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 50791    Answers: 1   Comments: 1

x+(3/4)x+2(10+x)+4=−6 sir help me plz

$$\mathrm{x}+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}+\mathrm{2}\left(\mathrm{10}+\mathrm{x}\right)+\mathrm{4}=−\mathrm{6} \\ $$$$\mathrm{sir}\:\mathrm{help}\:\mathrm{me}\:\mathrm{plz} \\ $$$$ \\ $$

Question Number 50783    Answers: 0   Comments: 0

x^3 +(2+3i)x+1=0 Find all three roots.

$${x}^{\mathrm{3}} +\left(\mathrm{2}+\mathrm{3}{i}\right){x}+\mathrm{1}=\mathrm{0} \\ $$$${Find}\:{all}\:{three}\:{roots}. \\ $$

Question Number 50770    Answers: 0   Comments: 1

Question Number 50764    Answers: 0   Comments: 2

Question Number 50762    Answers: 1   Comments: 1

Question Number 50755    Answers: 1   Comments: 1

Question Number 50747    Answers: 1   Comments: 2

x^2 −y^2 =a,a≠0 y^2 −z^2 =b,b≠0 z^2 −x^2 =c,c≠0 solve for :x,y,z.

$$\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{a}},{a}\neq\mathrm{0} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{b}},{b}\neq\mathrm{0} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{c}},{c}\neq\mathrm{0} \\ $$$${solve}\:{for}\::{x},{y},{z}.\:\: \\ $$

Question Number 50744    Answers: 1   Comments: 0

If the perimeter of a rectangle is a 2−digit number which unit digitL and tens digit represents its length and breadth respectively.Find its area in constant.

$${If}\:{the}\:{perimeter}\:{of}\:{a}\:{rectangle}\:{is} \\ $$$${a}\:\mathrm{2}−{digit}\:{number}\:{which}\:{unit}\:{digit}\mathscr{L} \\ $$$${and}\:{tens}\:{digit}\:{represents}\:{its}\:{length} \\ $$$${and}\:{breadth}\:{respectively}.{Find}\:{its} \\ $$$${area}\:{in}\:{constant}. \\ $$

Question Number 50732    Answers: 3   Comments: 0

Question Number 50730    Answers: 1   Comments: 0

(√(x−a))+(√(x−b))+(√(x−c))+x = d solve for x.

$$\sqrt{{x}−{a}}+\sqrt{{x}−{b}}+\sqrt{{x}−{c}}+{x}\:=\:{d} \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 50724    Answers: 1   Comments: 0

a man goes in for an examination in which there are 4 papers which maxmum of 10 marks for each paper the no of ways of getting 20 marks on the whole is ans:891

$$\mathrm{a}\:\mathrm{man}\:\mathrm{goes}\:\mathrm{in}\:\mathrm{for}\:\mathrm{an}\:\mathrm{examination}\:\mathrm{in} \\ $$$$\mathrm{which}\:\mathrm{there}\:\mathrm{are}\:\mathrm{4}\:\mathrm{papers}\:\mathrm{which}\:\mathrm{maxmum} \\ $$$$\mathrm{of}\:\mathrm{10}\:\mathrm{marks}\:\mathrm{for}\:\mathrm{each}\:\mathrm{paper}\:\mathrm{the}\:\mathrm{no}\:\mathrm{of}\:\mathrm{ways} \\ $$$$\mathrm{of}\:\mathrm{getting}\:\mathrm{20}\:\mathrm{marks}\:\mathrm{on}\:\mathrm{the}\:\mathrm{whole}\:\mathrm{is} \\ $$$$\mathrm{ans}:\mathrm{891} \\ $$

Question Number 50738    Answers: 0   Comments: 0

Question Number 50717    Answers: 2   Comments: 0

  Pg 1557      Pg 1558      Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564      Pg 1565      Pg 1566   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com