Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1561
Question Number 53471 Answers: 1 Comments: 3
$$\left.\mathrm{1}\right){find}\:\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{tan}^{{n}} {tdt}\:\:\:{with}\:{n}\:{integr}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{U}_{{n}} \\ $$$$ \\ $$
Question Number 53470 Answers: 0 Comments: 1
$${find}\:\:{Vn}=\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{{an}−\mathrm{1}}{{n}}} \:\frac{\sqrt{{x}}}{\sqrt{{a}−\sqrt{{x}}+{x}}}{dx} \\ $$$$ \\ $$
Question Number 53468 Answers: 1 Comments: 3
Question Number 53467 Answers: 1 Comments: 0
$${let}\:{A}_{{n}\:{m}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \left(\mathrm{1}−{x}\right)^{{m}} {dx}\:\:{with}\:{n}\:{and}\:{n}\:{integrs}\:{naturals} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}\:{m}} \:\:{by}\:{using}\:{factoriels} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n},{m}} \:{A}_{{nm}} \\ $$
Question Number 53466 Answers: 1 Comments: 0
$${let}\:{U}_{{n}} =\frac{\mathrm{1}}{{n}}\left\{\prod_{{k}=\mathrm{1}} ^{{n}} \left({n}+{k}\right)\right\}^{\frac{\mathrm{1}}{{n}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$
Question Number 53465 Answers: 1 Comments: 1
$${find}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{cosx}\:−{cos}^{\mathrm{3}} {x}}{dx} \\ $$
Question Number 53464 Answers: 1 Comments: 1
$${let}\:{U}_{{n}} =\:\frac{\left(\int_{\mathrm{0}} ^{{n}} \:{e}^{−{x}^{\mathrm{2}} } {dx}\right)^{\mathrm{2}} }{\int_{\mathrm{0}} ^{{n}} \:\:{e}^{−{nx}^{\mathrm{2}} } {dx}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determne}\:{nature}\:{of}\:\Sigma\:\:{U}_{{n}} \:\:{and}\:\Sigma\:{U}_{{n}} ^{\mathrm{3}} \:. \\ $$
Question Number 53463 Answers: 1 Comments: 1
$$\left.\mathrm{1}\right){let}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}}\:\:\:\:{and}\:\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{sin}\theta\:{x}\:+\mathrm{1}}} \\ $$$${calculate}\:{A}\left(\theta\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}} \\ $$
Question Number 53462 Answers: 1 Comments: 0
$${find}\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{xsinx}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 53455 Answers: 0 Comments: 1
$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{derivative} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{function}\:\mathrm{involving}\:\mathrm{complex} \\ $$$$\mathrm{numbers}\:?\:{Thanks} \\ $$
Question Number 53536 Answers: 1 Comments: 0
$$\mathrm{If}\:\left[{x}\right]\:\mathrm{stands}\:\mathrm{for}\:\mathrm{the}\:\mathrm{gratest}\:\mathrm{integer}\:\mathrm{function} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{4}} ^{\mathrm{10}} \frac{\left[{x}^{\mathrm{2}} \right]}{\left[{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{196}\right]+\left[{x}^{\mathrm{2}} \right]}\:{dx}\:\mathrm{is} \\ $$$$ \\ $$
Question Number 53450 Answers: 1 Comments: 1
Question Number 53447 Answers: 1 Comments: 0
Question Number 53426 Answers: 1 Comments: 1
$${The}\:{general}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+{ylnx}={x}^{−{x}} \\ $$$$\left.{a}\left.\right){x}^{{x}} \left(\mathrm{1}−{ce}^{{x}} \right)\:\:{b}\right)−{x}^{−{x}} \left(\mathrm{1}+{ce}^{\mathrm{2}{x}} \right) \\ $$$$\left.{c}\right)−{x}^{−{x}} \left(\mathrm{1}−{ce}^{{x}} \right) \\ $$
Question Number 53422 Answers: 4 Comments: 2
Question Number 53418 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{x}}{\mathrm{2}+{cosx}\:{sinx}}{dx} \\ $$
Question Number 53391 Answers: 1 Comments: 1
$${if}\:{A}+{B}+{C}=\mathrm{2}{S},\:{prove}\:{that}\: \\ $$$$\mathrm{4}\:\mathrm{sin}\:{S}\:\mathrm{sin}\left({S}−{A}\right)\mathrm{sin}\left({S}−{B}\right)\mathrm{sin}\left({S}−{C}\right) \\ $$$$=\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{A}−\mathrm{cos}^{\mathrm{2}} \:{B}−\mathrm{cos}^{\mathrm{2}} \:{C}+\mathrm{2}\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}\: \\ $$
Question Number 53386 Answers: 0 Comments: 6
$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{{dx}}{{e}^{{x}} +\:{e}^{−{x}} }\:=\:\mathrm{tan}^{−\mathrm{1}} {e}−\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 53385 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:{dx}}{\mathrm{1}+\mathrm{cos}\:\alpha\:\mathrm{sin}\:\alpha}\:, \\ $$$$\mathrm{0}<\:\alpha<\pi\:\:\:\mathrm{is} \\ $$
Question Number 53384 Answers: 1 Comments: 1
$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right)\:{dx}\:= \\ $$
Question Number 53383 Answers: 1 Comments: 1
$$\mathrm{If}\:\int\frac{\mathrm{1}}{\left(\mathrm{sin}\:{x}+\mathrm{4}\right)\left(\mathrm{sin}\:{x}−\mathrm{1}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:{A}\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{x}}{\mathrm{2}}−\mathrm{1}}+{B}\:\mathrm{tan}^{−\mathrm{1}} \left({f}\left({x}\right)\right)+{C},\:\mathrm{then} \\ $$
Question Number 53382 Answers: 1 Comments: 0
$$\int\:\mathrm{cos}^{\mathrm{3}} {x}\:{e}^{\mathrm{log}\:\left(\mathrm{sin}\:{x}\right)} {dx}\:= \\ $$
Question Number 53381 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{1}}{\left[\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} \right]^{\mathrm{1}/\mathrm{4}} }\:{dx}\:= \\ $$
Question Number 53378 Answers: 1 Comments: 0
$${if}\:{u}={e}^{{xyz}} \:{then}\:{u}_{{xyx}} =? \\ $$$$\left.{a}\left.\right){u}\left(\left({xyz}\right)^{\mathrm{2}} +\mathrm{3}{xyz}+\mathrm{1}\right)\:{b}\right){u}\left(\mathrm{3}\left({xyz}\right)^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\left.{c}\right){u}\left(\left({xyz}\right)^{\mathrm{2}} +\mathrm{2}{yz}+\mathrm{1}\right) \\ $$$$ \\ $$$${please}\:{help} \\ $$
Question Number 53376 Answers: 2 Comments: 1
Question Number 53359 Answers: 2 Comments: 0
$$\int\:\:\frac{{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{3}} +{x}}\:{dx}\:= \\ $$
Pg 1556 Pg 1557 Pg 1558 Pg 1559 Pg 1560 Pg 1561 Pg 1562 Pg 1563 Pg 1564 Pg 1565
Terms of Service
Privacy Policy
Contact: info@tinkutara.com