Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1560

Question Number 47727    Answers: 1   Comments: 0

Find the value of a for a : 4 : : 5 : 10

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{a}\:\mathrm{for} \\ $$$$\:\:\:\:\:{a}\::\:\mathrm{4}\::\::\:\mathrm{5}\::\:\mathrm{10} \\ $$

Question Number 47725    Answers: 1   Comments: 2

Question Number 47713    Answers: 0   Comments: 4

Question Number 47712    Answers: 0   Comments: 0

show that ^(^2 C_2 ) C_n = (1/((1−n)!(n−1)(n−2)(n−3)...3(2)(1)))

$${show}\:{that}\: \\ $$$$\:\:^{\:^{\mathrm{2}} \:{C}_{\mathrm{2}} \:} {C}_{{n}} =\:\frac{\mathrm{1}}{\left(\mathrm{1}−{n}\right)!\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)...\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{1}\right)} \\ $$

Question Number 47720    Answers: 2   Comments: 0

find ∫ ln(1+x^3 )dx

$${find}\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$

Question Number 47740    Answers: 2   Comments: 0

∫(dx/(x(x+1)(x+2)(x+3)...(x+n)))

$$\int\frac{{dx}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)...\left({x}+{n}\right)} \\ $$

Question Number 47697    Answers: 1   Comments: 1

Question Number 47677    Answers: 0   Comments: 3

∫x^(x ) dx=

$$\int\mathrm{x}^{\mathrm{x}\:} \mathrm{dx}= \\ $$

Question Number 47675    Answers: 2   Comments: 0

A particle of mass 4kg was at rest a a point of position vector i +4j. A force F was applied to it and it moved at a velocity of (3i + 7j)ms^(−1) after a time of 5seconds. Find a) the magnitude of F b) The speed at which it moves,Hence, c) The distance it covered.

$${A}\:{particle}\:{of}\:{mass}\:\mathrm{4}{kg}\:{was}\:{at}\:{rest}\:{a}\:{a}\:{point}\:{of}\:{position}\:{vector} \\ $$$${i}\:+\mathrm{4}{j}.\:{A}\:{force}\:{F}\:{was}\:{applied}\:{to}\:{it}\:{and}\:{it}\:{moved}\:{at}\:{a}\:{velocity} \\ $$$${of}\:\left(\mathrm{3}{i}\:+\:\mathrm{7}{j}\right){ms}^{−\mathrm{1}} \:\:\:{after}\:{a}\:{time}\:{of}\:\:\mathrm{5}{seconds}.\:{Find}\: \\ $$$$\left.{a}\right)\:{the}\:{magnitude}\:{of}\:{F} \\ $$$$\left.{b}\right)\:{The}\:{speed}\:{at}\:{which}\:{it}\:{moves},{Hence}, \\ $$$$\left.{c}\right)\:{The}\:{distance}\:{it}\:{covered}. \\ $$$$ \\ $$$$ \\ $$

Question Number 47659    Answers: 2   Comments: 0

Question Number 47657    Answers: 1   Comments: 7

Question Number 47656    Answers: 1   Comments: 1

A square is divided into 9 identical smaller squares.Six identical balls are to be placed in these smaller squares such that each of the three rows gets at least one ball(one ball in one square only).In how many different ways can this be done? a)91 b)51 c)81 d)41

$${A}\:{square}\:{is}\:{divided}\:{into}\:\mathrm{9}\:{identical} \\ $$$${smaller}\:{squares}.{Six}\:{identical}\:{balls} \\ $$$${are}\:{to}\:{be}\:{placed}\:{in}\:{these}\:{smaller}\: \\ $$$${squares}\:{such}\:{that}\:{each}\:{of}\:{the}\:{three} \\ $$$${rows}\:{gets}\:{at}\:{least}\:{one}\:{ball}\left({one}\right. \\ $$$$\left.{ball}\:{in}\:{one}\:{square}\:{only}\right).{In}\:{how} \\ $$$${many}\:{different}\:{ways}\:{can}\:{this}\:{be} \\ $$$${done}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{9}\left.\mathrm{1}\:{b}\right)\mathrm{51}\:{c}\right)\mathrm{81}\:{d}\right)\mathrm{41} \\ $$$$ \\ $$

Question Number 47651    Answers: 1   Comments: 1

calculate A_n =∫_0 ^1 sin([nx])e^(−2x) dx with n integr natural .

$${calculate}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{sin}\left(\left[{nx}\right]\right){e}^{−\mathrm{2}{x}} {dx}\:{with}\:{n} \\ $$$${integr}\:{natural}\:. \\ $$

Question Number 47646    Answers: 1   Comments: 2

Question Number 47641    Answers: 0   Comments: 0

E=(E_1 ^2 +E_2 ^2 +2E_1 E_2 cos2θ)^(1/2) full explanation

$$\mathrm{E}=\left(\mathrm{E}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{E}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2E}_{\mathrm{1}} \mathrm{E}_{\mathrm{2}} \mathrm{cos2}\theta\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{full}\:\mathrm{explanation} \\ $$

Question Number 47638    Answers: 0   Comments: 3

∫_0 ^π (√((1+cos2x)/2)) dx

$$\int_{\mathrm{0}} ^{\pi} \sqrt{\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}}\:\:{dx} \\ $$

Question Number 47637    Answers: 1   Comments: 2

∫_0 ^1 sin([x]+[2x])dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left(\left[{x}\right]+\left[\mathrm{2}{x}\right]\right){dx} \\ $$

Question Number 47639    Answers: 1   Comments: 0

derivation or proof or full explanation of R=(R_1 ^2 +R_2 ^2 +2R_1 .R_2 cosθ)^(1/2)

$$\boldsymbol{\mathrm{derivation}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{proof}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{full}}\:\boldsymbol{\mathrm{explanation}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{R}}=\left(\boldsymbol{\mathrm{R}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\mathrm{R}}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2R}_{\mathrm{1}} .\mathrm{R}_{\mathrm{2}} \mathrm{cos}\theta\right)^{\mathrm{1}/\mathrm{2}} \\ $$

Question Number 47628    Answers: 1   Comments: 0

If the first term and n^(th) term of G.P., are a and b respectively, p is the product of n terms. Prove that p^2 = (ab)^n .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{G}.\mathrm{P}.,\:\:\mathrm{are}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{respectively},\: \\ $$$$\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}^{\mathrm{2}} \:=\:\left(\mathrm{ab}\right)^{\mathrm{n}} . \\ $$$$ \\ $$$$ \\ $$

Question Number 47627    Answers: 0   Comments: 0

Could someone explain me how cellular automata theory can be used in the bioligical field in relation to the spread of disease and/or cancer cells ? Thank you very much !

$$\mathrm{Could}\:\mathrm{someone}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\:\mathrm{cellular} \\ $$$$\mathrm{automata}\:\mathrm{theory}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{bioligical}\:\mathrm{field}\:\mathrm{in}\:\mathrm{relation}\:\mathrm{to}\:\mathrm{the}\:\mathrm{spread} \\ $$$$\mathrm{of}\:\mathrm{disease}\:\mathrm{and}/\mathrm{or}\:\mathrm{cancer}\:\mathrm{cells}\:? \\ $$$${Thank}\:{you}\:{very}\:{much}\:! \\ $$

Question Number 47626    Answers: 0   Comments: 0

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Question Number 47624    Answers: 1   Comments: 0

Solve the d.e using method of variation of parameter. (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$

Question Number 47623    Answers: 0   Comments: 0

Solve the d.e using method of variation of parameter. (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$

Question Number 47613    Answers: 1   Comments: 0

1(8/9)=((2x−1)/5) sir plz help me

$$\mathrm{1}\frac{\mathrm{8}}{\mathrm{9}}=\frac{\mathrm{2x}−\mathrm{1}}{\mathrm{5}}\:\:\:\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 47621    Answers: 1   Comments: 1

Find locus of point P from which tangents PA & PB to circles x^2 +y^2 =a^2 and x^2 +y^2 =b^2 respectively are perpendicular.

$${Find}\:{locus}\:{of}\:{point}\:{P}\:{from}\:{which} \\ $$$${tangents}\:{PA}\:\&\:{PB}\:{to}\:{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \:{respectively}\:{are}\:{perpendicular}. \\ $$

Question Number 47607    Answers: 1   Comments: 1

∫_a ^b ((∣x∣)/x)dx

$$\int_{{a}} ^{{b}} \frac{\mid{x}\mid}{{x}}{dx} \\ $$

  Pg 1555      Pg 1556      Pg 1557      Pg 1558      Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com