Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1560

Question Number 54767    Answers: 1   Comments: 1

A stone is thrown vertically upwards from a cliff 20m high. After a time of 3 s it passes the edge of the cliff on its way down. Calculate a) the speed of projection b) the speed when it hits the ground c) the times when it is 10m above the top of the cliff d) the time it is 15m above the ground (take g=10ms^(−2) ).

$$\mathrm{A}\:\mathrm{stone}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upwards} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{cliff}\:\mathrm{20m}\:\mathrm{high}.\:\mathrm{After}\:\mathrm{a}\:\mathrm{time}\:\mathrm{of}\:\mathrm{3}\:\mathrm{s} \\ $$$$\mathrm{it}\:\mathrm{passes}\:\mathrm{the}\:\mathrm{edge}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cliff}\:\mathrm{on}\:\mathrm{its}\:\mathrm{way} \\ $$$$\mathrm{down}.\:\mathrm{Calculate} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{projection} \\ $$$$\left.\mathrm{b}\right)\:\mathrm{the}\:\mathrm{speed}\:\mathrm{when}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left.\mathrm{c}\right)\:\mathrm{the}\:\mathrm{times}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{10m}\:\mathrm{above}\:\mathrm{the} \\ $$$$\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cliff} \\ $$$$\left.\mathrm{d}\right)\:\mathrm{the}\:\mathrm{time}\:\mathrm{it}\:\mathrm{is}\:\mathrm{15m}\:\mathrm{above}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left(\mathrm{take}\:\mathrm{g}=\mathrm{10ms}^{−\mathrm{2}} \right). \\ $$

Question Number 54765    Answers: 1   Comments: 0

Question Number 54756    Answers: 1   Comments: 0

solve ∫tan(x−θ)tan(x+θ)tan 2x dx

$${solve} \\ $$$$\int{tan}\left({x}−\theta\right){tan}\left({x}+\theta\right){tan}\:\mathrm{2}{x}\:{dx} \\ $$

Question Number 54755    Answers: 1   Comments: 0

solve for x sin[2cos^(−1) {cot(2tan^(−1) x)}]=0 (x = 1∓(√(2 )) , ∓1 ,−1∓(√2) )

$${solve}\:{for}\:{x} \\ $$$${sin}\left[\mathrm{2}{cos}^{−\mathrm{1}} \left\{{cot}\left(\mathrm{2}{tan}^{−\mathrm{1}} {x}\right)\right\}\right]=\mathrm{0} \\ $$$$ \\ $$$$\left({x}\:=\:\mathrm{1}\mp\sqrt{\mathrm{2}\:}\:,\:\mp\mathrm{1}\:,−\mathrm{1}\mp\sqrt{\mathrm{2}}\:\:\right) \\ $$

Question Number 54745    Answers: 0   Comments: 0

(√(1−x^2 +))(√(1−y^2 ))=a(x−y) (dy/dx)=(√((1−y^2 )/(1−x^2 ))) without solve put x=sinθand y=sinφ direct solve

$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} +}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }={a}\left({x}−{y}\right) \\ $$$$\frac{{dy}}{{dx}}=\sqrt{\frac{\mathrm{1}−{y}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${without}\:{solve}\:{put}\:{x}={sin}\theta{and} \\ $$$${y}={sin}\phi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${direct}\:{solve} \\ $$

Question Number 54741    Answers: 1   Comments: 1

such that 1. ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2 =(((2n)!)/((n!)^2 )) 2. ((n),(0) )+(1/2) ((n),(1) )+...+(1/(n+1)) ((n),(n) )^2 =((2^(n+1) −1)/(n+1))

$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}^{\mathrm{2}} +...+\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}.\:\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}+\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}+...+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}} \\ $$

Question Number 54740    Answers: 3   Comments: 0

Prove that 1. ((n),(r) ) = (((n−1)),(( r)) ) + (((n−1)),(( r−1)) ) 2. ((n),(r) ) + ((( n)),((r−1)) ) = (((n+1)),(( r)) ) 3. ((n),(0) )+ ((n),(1) )+ ((n),(2) )+..+ ((n),(n) )=2^n

$${Prove}\:{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\:+\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:{r}−\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{2}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\: \\ $$$$\mathrm{3}.\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}+..+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}=\mathrm{2}^{{n}} \\ $$

Question Number 54737    Answers: 0   Comments: 0

Question Number 54730    Answers: 0   Comments: 3

prove lnx≤x

$${prove}\:{lnx}\leqslant{x} \\ $$

Question Number 54716    Answers: 0   Comments: 6

A light horizontal meter rule PQR has the end P fixed to vertical wall, while a weight of 5N is suspended from the end R. A light string QS of length 50cm fixed to the wall at S is used to maintain the meter rule in equilibrium. If PQ = 40 cm, the tension in the string is ?

$$\mathrm{A}\:\mathrm{light}\:\mathrm{horizontal}\:\mathrm{meter}\:\mathrm{rule}\:\:\mathrm{PQR}\:\:\mathrm{has}\:\mathrm{the}\:\mathrm{end}\:\:\mathrm{P}\:\mathrm{fixed}\:\mathrm{to}\: \\ $$$$\mathrm{vertical}\:\mathrm{wall},\:\mathrm{while}\:\mathrm{a}\:\mathrm{weight}\:\mathrm{of}\:\:\mathrm{5N}\:\mathrm{is}\:\mathrm{suspended}\:\mathrm{from}\:\mathrm{the}\:\mathrm{end} \\ $$$$\mathrm{R}.\:\mathrm{A}\:\mathrm{light}\:\mathrm{string}\:\mathrm{QS}\:\:\mathrm{of}\:\mathrm{length}\:\:\mathrm{50cm}\:\mathrm{fixed}\:\mathrm{to}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{at}\:\mathrm{S}\:\mathrm{is}\: \\ $$$$\mathrm{used}\:\mathrm{to}\:\mathrm{maintain}\:\mathrm{the}\:\mathrm{meter}\:\mathrm{rule}\:\mathrm{in}\:\mathrm{equilibrium}. \\ $$$$\mathrm{If}\:\:\mathrm{PQ}\:=\:\mathrm{40}\:\mathrm{cm},\:\:\:\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{string}\:\mathrm{is}\:? \\ $$

Question Number 54721    Answers: 0   Comments: 0

Show that ((Σ{sin 2xtan (y−z)cos^2 (y+z)})/(Σ{cos 2xtan (y−z)sin^2 (y+z)} )) = tan 2xtan 2ytan 2z

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\frac{\Sigma\left\{\mathrm{sin}\:\mathrm{2xtan}\:\left(\mathrm{y}−\mathrm{z}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{y}+\mathrm{z}\right)\right\}}{\Sigma\left\{\mathrm{cos}\:\mathrm{2xtan}\:\left(\mathrm{y}−\mathrm{z}\right)\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{y}+\mathrm{z}\right)\right\}\:\:\:}\:\:=\:\mathrm{tan}\:\mathrm{2xtan}\:\mathrm{2ytan}\:\mathrm{2z} \\ $$

Question Number 54701    Answers: 2   Comments: 0

Question Number 54700    Answers: 1   Comments: 1

Find the sum to infinity 1−(1/(2 ))cos θ+(1/4)cos 2θ−(1/8)cos 3θ+..........

$$\mathrm{F}{i}\mathrm{nd}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\:}\mathrm{cos}\:\theta+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\:\mathrm{3}\theta+.......... \\ $$$$ \\ $$

Question Number 54699    Answers: 2   Comments: 3

∫ e^(2x) ((1/x) −(1/(2x^2 )))dx ∫e^(2x) (((1+sin 2x)/(1+cos 2x)))dx. Solve above Questions by using the formulae : ∫e^(kx) {f(kx)+f ′(kx)}dx= e^(kx) f(kx)+c.

$$\int\:{e}^{\mathrm{2}{x}} \:\left(\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right){dx} \\ $$$$\int{e}^{\mathrm{2}{x}} \:\left(\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}}\right){dx}. \\ $$$${Solve}\:{above}\:{Questions}\:{by}\:{using}\:{the} \\ $$$${formulae}\:: \\ $$$$\int{e}^{{kx}} \left\{{f}\left({kx}\right)+{f}\:'\left({kx}\right)\right\}{dx}=\:{e}^{{kx}} \:{f}\left({kx}\right)+{c}. \\ $$

Question Number 54698    Answers: 2   Comments: 0

How many words with at least 2 letters can be formed using the letters from TINKUTARA?

$${How}\:{many}\:{words}\:{with}\:{at}\:{least}\:\mathrm{2}\:{letters} \\ $$$${can}\:{be}\:{formed}\:{using}\:{the}\:{letters}\:{from} \\ $$$${TINKUTARA}? \\ $$

Question Number 54679    Answers: 2   Comments: 1

Question Number 54675    Answers: 1   Comments: 1

simplify A_n =Σ_(k=0) ^n k^2 C_n ^k cos(kθ) and B_n =Σ_(k=0) ^n k^2 C_n ^k sin(kθ) .

$${simplify}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{2}} \:{C}_{{n}} ^{{k}} \:{cos}\left({k}\theta\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{2}} \:{C}_{{n}} ^{{k}} \:{sin}\left({k}\theta\right)\:. \\ $$

Question Number 54688    Answers: 1   Comments: 1

f(x)=((2[x])/(3x−[x])) examine its continuity at x=((−1)/2) where [x] is greatest integer function

$${f}\left({x}\right)=\frac{\mathrm{2}\left[{x}\right]}{\mathrm{3}{x}−\left[{x}\right]}\:{examine}\:{its}\:{continuity}\:{at}\:{x}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$${where}\:\left[{x}\right]\:{is}\:{greatest}\:{integer}\:{function} \\ $$

Question Number 54663    Answers: 1   Comments: 1

y = cos2t×sen2t y′ = ?

$${y}\:=\:{cos}\mathrm{2}{t}×{sen}\mathrm{2}{t} \\ $$$$ \\ $$$${y}'\:=\:? \\ $$

Question Number 54661    Answers: 1   Comments: 3

Question Number 54659    Answers: 1   Comments: 2

Question Number 54658    Answers: 0   Comments: 0

Question Number 54647    Answers: 0   Comments: 3

show that a. Σ_(r=1) ^(n) r^3 ._n C_r =n^2 (n+3).2^(n−3) b. _n C_0 ._n C_1 +_n C_1 ._n C_2 +...+_n C_(n−1) ._n C_n =(((2n)!)/((n−1)!.(n+1)!))

$$\mathrm{show}\:\mathrm{that} \\ $$$${a}.\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\Sigma}}\:{r}^{\mathrm{3}} ._{{n}} {C}_{{r}} ={n}^{\mathrm{2}} \left({n}+\mathrm{3}\right).\mathrm{2}^{{n}−\mathrm{3}} \\ $$$${b}.\:_{{n}} {C}_{\mathrm{0}} ._{{n}} {C}_{\mathrm{1}} +_{{n}} {C}_{\mathrm{1}} ._{{n}} {C}_{\mathrm{2}} +...+_{{n}} {C}_{{n}−\mathrm{1}} ._{{n}} {C}_{{n}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}−\mathrm{1}\right)!.\left({n}+\mathrm{1}\right)!} \\ $$

Question Number 54646    Answers: 2   Comments: 0

Such That a. _(n+1) C_r =(((n+1). _n C_r )/((n−r+1))) b. _n C_0 +_n C_2 +_n C_(4...) =_n C_1 +_n C_3 +_n C_(5...) =2^(n−1)

$$\mathrm{Such}\:\mathrm{That} \\ $$$$\mathrm{a}.\:_{{n}+\mathrm{1}} {C}_{{r}} =\frac{\left({n}+\mathrm{1}\right).\:_{{n}} {C}_{{r}} }{\left({n}−{r}+\mathrm{1}\right)} \\ $$$$\mathrm{b}.\:_{{n}} {C}_{\mathrm{0}} +_{{n}} {C}_{\mathrm{2}} +_{{n}} {C}_{\mathrm{4}...} =_{{n}} {C}_{\mathrm{1}} +_{{n}} {C}_{\mathrm{3}} +_{{n}} {C}_{\mathrm{5}...} =\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$ \\ $$

Question Number 54644    Answers: 1   Comments: 0

A= [(3,7),((−1),(−2)) ] A^(27) +A^(31) +A^(40) =...

$$\mathrm{A}=\begin{bmatrix}{\mathrm{3}}&{\mathrm{7}}\\{−\mathrm{1}}&{−\mathrm{2}}\end{bmatrix} \\ $$$${A}^{\mathrm{27}} +{A}^{\mathrm{31}} +{A}^{\mathrm{40}} =... \\ $$

Question Number 54641    Answers: 0   Comments: 1

Given f(x) = ((4x + (√(4x^2 − 1)))/((√(2x + 1)) − (√(2x − 1)))) Find the value of f(13) + f(14) + f(15) + ... + f(112)

$$\mathrm{Given} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{4}{x}\:+\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:−\:\mathrm{1}}}{\sqrt{\mathrm{2}{x}\:+\:\mathrm{1}}\:−\:\sqrt{\mathrm{2}{x}\:−\:\mathrm{1}}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$${f}\left(\mathrm{13}\right)\:+\:{f}\left(\mathrm{14}\right)\:+\:{f}\left(\mathrm{15}\right)\:+\:...\:+\:{f}\left(\mathrm{112}\right) \\ $$

  Pg 1555      Pg 1556      Pg 1557      Pg 1558      Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563      Pg 1564   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com