Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1560
Question Number 54462 Answers: 1 Comments: 1
Question Number 54460 Answers: 1 Comments: 0
$${Solve}\:\frac{{dy}}{{dx}}+\mathrm{3}{x}=\mathrm{5} \\ $$
Question Number 54457 Answers: 0 Comments: 0
Question Number 54447 Answers: 2 Comments: 1
Question Number 54487 Answers: 0 Comments: 0
Question Number 54422 Answers: 1 Comments: 4
$$\mathrm{The}\:\mathrm{median}\:{AD}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC} \\ $$$$\mathrm{is}\:\mathrm{bisected}\:\mathrm{at}\:{E},\:{BE}\:\mathrm{meets}\:{AC}\:\mathrm{in}\:{F}, \\ $$$$\mathrm{then}\:{AF}\::\:{AC}\:= \\ $$
Question Number 54421 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{c}},\:\boldsymbol{\mathrm{a}}={x}\boldsymbol{\mathrm{i}}+{y}\boldsymbol{\mathrm{j}}+{z}\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{j}} \\ $$$$\mathrm{are}\:\mathrm{such}\:\mathrm{that}\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{c}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}\:\mathrm{form}\:\mathrm{a}\:\mathrm{right} \\ $$$$\mathrm{handed}\:\mathrm{system},\:\mathrm{then}\:\boldsymbol{\mathrm{c}}\:\mathrm{is} \\ $$
Question Number 54420 Answers: 1 Comments: 0
$$\mathrm{Let}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\mathrm{2}\boldsymbol{\mathrm{i}}−\boldsymbol{\mathrm{k}},\:\mathrm{the}\:\mathrm{point}\:\mathrm{of} \\ $$$$\mathrm{intersection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:\boldsymbol{\mathrm{r}}×\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{b}}×\boldsymbol{\mathrm{a}} \\ $$$$\mathrm{and}\:\boldsymbol{\mathrm{r}}×\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{a}}×\boldsymbol{\mathrm{b}}\:\mathrm{is} \\ $$
Question Number 54419 Answers: 1 Comments: 0
$$\mathrm{If}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}},\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{i}}−\boldsymbol{\mathrm{j}}+\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit} \\ $$$$\mathrm{vector}\:\bot\:\mathrm{to}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\mathrm{coplanar} \\ $$$$\mathrm{with}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}},\:\mathrm{then}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}\:\boldsymbol{\mathrm{d}}\:\bot\:\mathrm{to} \\ $$$$\mathrm{both}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\mathrm{is} \\ $$
Question Number 54418 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{projection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{4}\boldsymbol{\mathrm{i}}−\mathrm{3}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{making}\:\mathrm{equal}\:\mathrm{acute}\:\mathrm{angles} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{is} \\ $$
Question Number 54417 Answers: 0 Comments: 0
$$\mathrm{A}\:\mathrm{force}\:\mathrm{of}\:\mathrm{39}\:\mathrm{kg}\:\mathrm{weight}\:\mathrm{is}\:\mathrm{acting}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{point}\:{P}\left(−\mathrm{4},\:\mathrm{2},\:\mathrm{5}\right)\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}\: \\ $$$$\mathrm{12}\boldsymbol{\mathrm{i}}−\mathrm{4}\boldsymbol{\mathrm{j}}−\mathrm{3}\boldsymbol{\mathrm{k}}.\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{this}\:\mathrm{force} \\ $$$$\mathrm{about}\:\mathrm{a}\:\mathrm{line}\:\mathrm{through}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{having} \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{j}}+\boldsymbol{\mathrm{k}}\:\mathrm{is} \\ $$
Question Number 54416 Answers: 0 Comments: 0
Question Number 54413 Answers: 0 Comments: 8
Question Number 54409 Answers: 2 Comments: 1
$${li}\underset{{x}\rightarrow\infty} {{m}}\sqrt{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−{x}=? \\ $$$${pls}\:{solve}\:{this} \\ $$$$ \\ $$
Question Number 54396 Answers: 1 Comments: 1
Question Number 54388 Answers: 0 Comments: 0
Question Number 54378 Answers: 0 Comments: 3
$$\underset{\pi/\mathrm{3}} {\overset{\mathrm{3}\pi/\mathrm{2}} {\int}}\:\:\left[\:\mathrm{2}\:\mathrm{cos}\:{x}\:\right]\:{dx}\:= \\ $$
Question Number 54377 Answers: 0 Comments: 0
Question Number 54376 Answers: 3 Comments: 3
$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{ax}\:\:+\mathrm{1}} \\ $$$${with}\:\:\:\mid{a}\mid<\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+{ax}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{values}\:{of}\:{integrals}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$${and}\:\int_{−\infty} ^{+\infty} \:\frac{{x}}{\left({x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{cos}\theta\:+\mathrm{1}} \\ $$$$\theta\:{is}\:{a}\:{given}\:{real}. \\ $$
Question Number 54374 Answers: 0 Comments: 1
$${calculate}\:{h}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({at}\right)}{{ch}\left(\frac{{t}}{\mathrm{2}}\right)}{dt}\:. \\ $$
Question Number 54372 Answers: 1 Comments: 3
$${let}\:\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{{x}+{sint}}{dt}\:\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\left({x}+{sint}\right)^{\mathrm{2}} }\:{dt}\: \\ $$$$\left.\mathrm{3}\right)\:{calculste}\:{for}\:{n}\in{N}\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{sint}}{\left({x}+{sint}\right)^{{n}} }{dt}\: \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{sint}}{\mathrm{2}+{sint}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\left(\mathrm{2}+{sint}\right)^{\mathrm{2}} }{dt}\:. \\ $$
Question Number 54371 Answers: 1 Comments: 1
$${prove}\:{that}\:{ln}\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}\:. \\ $$
Question Number 54369 Answers: 0 Comments: 2
$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\left(\xi\left({x}\right)−\frac{\mathrm{1}}{{x}−\mathrm{1}}\right) \\ $$
Question Number 54367 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left[{t}\right]}{{t}}\:{t}^{−{p}} {dt}\:{interms}\:{of}\:\xi\left({p}\right)\:{with}\:{p}>\mathrm{0}\:. \\ $$
Question Number 54364 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\mathrm{per} \\ $$$$\mathrm{pendicular}\:\mathrm{segment}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{whose}\:\mathrm{intercept}\:\mathrm{are} \\ $$$$\mathrm{a}\:\:\mathrm{and}\:\:\:\:\mathrm{b}.\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 54360 Answers: 2 Comments: 1
Pg 1555 Pg 1556 Pg 1557 Pg 1558 Pg 1559 Pg 1560 Pg 1561 Pg 1562 Pg 1563 Pg 1564
Terms of Service
Privacy Policy
Contact: info@tinkutara.com