Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1559

Question Number 43489    Answers: 1   Comments: 0

if y=cos(logx) +3sin(logx) prove that x^2 (d^2 x/dx^2 )+x(dy/dx)+y=0

$${if}\:{y}={cos}\left({logx}\right)\:+\mathrm{3}{sin}\left({logx}\right)\:{prove}\:{that} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {x}}{{dx}^{\mathrm{2}} }+{x}\frac{{dy}}{{dx}}+{y}=\mathrm{0} \\ $$

Question Number 43488    Answers: 1   Comments: 0

if the root of x^3 +px_ ^2 +qx+30=0 are in the ratio 2:3:5find the value of p and q

$${if}\:{the}\:{root}\:{of}\:\:{x}^{\mathrm{3}} +{px}_{} ^{\mathrm{2}} +{qx}+\mathrm{30}=\mathrm{0}\:{are} \\ $$$${in}\:{the}\:{ratio}\:\mathrm{2}:\mathrm{3}:\mathrm{5}{find}\:{the}\:{value}\:{of}\:{p}\:{and}\:{q} \\ $$

Question Number 43486    Answers: 3   Comments: 1

Question Number 43481    Answers: 1   Comments: 0

(((1+2i)^3 )/((3+i)))=

$$\frac{\left(\mathrm{1}+\mathrm{2}{i}\right)^{\mathrm{3}} }{\left(\mathrm{3}+{i}\right)}= \\ $$

Question Number 43471    Answers: 1   Comments: 0

Question Number 43470    Answers: 0   Comments: 0

Please what topic is all the question that has the summation sign. Σ. How can i study the summation by using it to solve some continuous equation.

$$\mathrm{Please}\:\mathrm{what}\:\mathrm{topic}\:\mathrm{is}\:\mathrm{all}\:\mathrm{the}\:\mathrm{question}\:\mathrm{that}\:\mathrm{has}\:\mathrm{the}\:\mathrm{summation}\:\mathrm{sign}. \\ $$$$\Sigma.\:\:\:\:\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{study}\:\mathrm{the}\:\mathrm{summation}\:\mathrm{by}\:\mathrm{using}\:\mathrm{it}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{some}\:\mathrm{continuous} \\ $$$$\mathrm{equation}. \\ $$

Question Number 43467    Answers: 2   Comments: 0

prove that tanθ+2tan2θ+4tan 4θ +8cot8θ=cotθ

$${prove}\:{th}\mathrm{at}\:\mathrm{tan}\theta+\mathrm{2}{tan}\mathrm{2}\theta+\mathrm{4}{tan}\:\:\:\mathrm{4}\theta \\ $$$$+\mathrm{8cot8}\theta={cot}\theta \\ $$

Question Number 43465    Answers: 2   Comments: 1

Question Number 43463    Answers: 0   Comments: 1

Question Number 43461    Answers: 0   Comments: 1

found something (others have found before) which I thought might be of interest, especially for Sir Tanmay Chaudhury: take any polynome of degree 4 with 2 real inflection points y=ax^4 +bx^3 +cx^2 +dx+e y′′=12ax^2 +6bx+2c=0 has got 2 real solutions x_1 and x_2 the line connecting the inflection points intersects the curve in 2 more points P and Q, their x−values are p and q let p<x_1 <x_2 <q ⇒ ((x_2 −x_1 )/(x_1 −p))=((x_2 −x_1 )/(q−x_2 ))=(1/2)+((√5)/2) which is the Golden Ratio

$$\mathrm{found}\:\mathrm{something}\:\left(\mathrm{others}\:\mathrm{have}\:\mathrm{found}\:\mathrm{before}\right) \\ $$$$\mathrm{which}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{might}\:\mathrm{be}\:\mathrm{of}\:\mathrm{interest}, \\ $$$$\mathrm{especially}\:\mathrm{for}\:\mathrm{Sir}\:\mathrm{Tanmay}\:\mathrm{Chaudhury}: \\ $$$$\mathrm{take}\:\mathrm{any}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{with}\:\mathrm{2}\:\mathrm{real} \\ $$$$\mathrm{inflection}\:\mathrm{points} \\ $$$${y}={ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e} \\ $$$${y}''=\mathrm{12}{ax}^{\mathrm{2}} +\mathrm{6}{bx}+\mathrm{2}{c}=\mathrm{0}\:\mathrm{has}\:\mathrm{got}\:\mathrm{2}\:\mathrm{real}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} \:\mathrm{and}\:{x}_{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{connecting}\:\mathrm{the}\:\mathrm{inflection}\:\mathrm{points} \\ $$$$\mathrm{intersects}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{in}\:\mathrm{2}\:\mathrm{more}\:\mathrm{points} \\ $$$${P}\:\mathrm{and}\:{Q},\:\mathrm{their}\:{x}−\mathrm{values}\:\mathrm{are}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{let}\:{p}<{x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{q} \\ $$$$\Rightarrow\:\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{x}_{\mathrm{1}} −{p}}=\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{q}−{x}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Golden}\:\mathrm{Ratio} \\ $$

Question Number 43454    Answers: 0   Comments: 0

qn: There is a group of 50 people who are patriotic out of which 20 believes in non violence. Two persons are selected at rondom out of them. write the probability distribution for the selected persons who are non violent. also find the mean of the distribution. explain the importance of non violence in patriotism.

$$\mathrm{qn}:\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{50}\:\mathrm{people} \\ $$$$\mathrm{who}\:\mathrm{are}\:\mathrm{patriotic}\:\mathrm{out}\:\mathrm{of}\:\mathrm{which}\:\mathrm{20} \\ $$$$\mathrm{believes}\:\mathrm{in}\:\mathrm{non}\:\mathrm{violence}.\:\mathrm{Two}\:\mathrm{persons} \\ $$$$\mathrm{are}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{rondom}\:\mathrm{out}\:\mathrm{of}\:\mathrm{them}. \\ $$$$\mathrm{write}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{distribution}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{selected}\:\mathrm{persons}\:\mathrm{who}\:\mathrm{are}\:\mathrm{non}\:\mathrm{violent}. \\ $$$$\mathrm{also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distribution}. \\ $$$$\mathrm{explain}\:\mathrm{the}\:\mathrm{importance}\:\mathrm{of}\:\mathrm{non}\:\mathrm{violence}\:\mathrm{in}\:\mathrm{patriotism}. \\ $$$$ \\ $$$$ \\ $$

Question Number 43452    Answers: 1   Comments: 0

prove that tanhx=itanx

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{tanh}{x}}=\boldsymbol{{i}\mathrm{tan}{x}} \\ $$

Question Number 43449    Answers: 1   Comments: 0

Question Number 43446    Answers: 0   Comments: 0

Question Number 43441    Answers: 0   Comments: 0

Question Number 43438    Answers: 2   Comments: 0

Question Number 43434    Answers: 0   Comments: 1

Let P and Q be statements. If (∼P) ∨ Q is true, then P ∨ Q is false. True or False?

$$\mathrm{Let}\:{P}\:\mathrm{and}\:{Q}\:\mathrm{be}\:\mathrm{statements}.\:\mathrm{If}\:\left(\sim{P}\right)\:\vee\:{Q}\:\mathrm{is}\:\mathrm{true}, \\ $$$$\mathrm{then}\:{P}\:\:\vee\:{Q}\:\mathrm{is}\:\mathrm{false}. \\ $$$$\mathrm{True}\:\mathrm{or}\:\mathrm{False}? \\ $$

Question Number 43419    Answers: 0   Comments: 2

Question Number 43418    Answers: 1   Comments: 0

Question Number 43417    Answers: 1   Comments: 2

Question Number 43416    Answers: 0   Comments: 1

Question Number 43404    Answers: 1   Comments: 0

Question Number 43398    Answers: 0   Comments: 0

Question Number 43395    Answers: 1   Comments: 2

Question Number 43393    Answers: 0   Comments: 0

Question Number 43391    Answers: 1   Comments: 0

x^2 +x=y^4 +y^3 +y^2 +y x^4 +(x+1)^4 =y^2 +(y+1)^2 find x and y of is…

$${x}^{\mathrm{2}} +{x}={y}^{\mathrm{4}} +{y}^{\mathrm{3}} +{y}^{\mathrm{2}} +{y} \\ $$$${x}^{\mathrm{4}} +\left({x}+\mathrm{1}\right)^{\mathrm{4}} ={y}^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{find}\:{x}\:\mathrm{and}\:{y}\:\:\mathrm{of}\:\mathrm{is}\ldots \\ $$$$ \\ $$

  Pg 1554      Pg 1555      Pg 1556      Pg 1557      Pg 1558      Pg 1559      Pg 1560      Pg 1561      Pg 1562      Pg 1563   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com