Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1559
Question Number 54371 Answers: 1 Comments: 1
$${prove}\:{that}\:{ln}\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}\:. \\ $$
Question Number 54369 Answers: 0 Comments: 2
$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\left(\xi\left({x}\right)−\frac{\mathrm{1}}{{x}−\mathrm{1}}\right) \\ $$
Question Number 54367 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left[{t}\right]}{{t}}\:{t}^{−{p}} {dt}\:{interms}\:{of}\:\xi\left({p}\right)\:{with}\:{p}>\mathrm{0}\:. \\ $$
Question Number 54364 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\mathrm{per} \\ $$$$\mathrm{pendicular}\:\mathrm{segment}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{whose}\:\mathrm{intercept}\:\mathrm{are} \\ $$$$\mathrm{a}\:\:\mathrm{and}\:\:\:\:\mathrm{b}.\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 54360 Answers: 2 Comments: 1
Question Number 54357 Answers: 2 Comments: 1
Question Number 54353 Answers: 0 Comments: 1
$${What}\:{is}\:\cup,\cap?? \\ $$$$\left.{I}\:{want}\:{to}\:{know}\:\mathrm{plz}\::\right) \\ $$$${Have}\:{a}\:{nice}\:{day}\:! \\ $$
Question Number 54341 Answers: 1 Comments: 0
Question Number 58312 Answers: 0 Comments: 4
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{angle}\:\theta\:\mathrm{between}\:\mathrm{two}\:\mathrm{unit} \\ $$$$\mathrm{vectors}\:\underset{ } {\hat {\mathrm{a}}}\:\mathrm{and}\:\underset{ } {\hat {\mathrm{b}}}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{cos}\theta=\underset{ } {\hat {\mathrm{a}}}\bullet\underset{ } {\hat {\mathrm{b}}}. \\ $$$$\mathrm{Hence},\:\mathrm{given}\:\mathrm{that}\:\underset{ } {\hat {\mathrm{a}}}=\underset{ } {\mathrm{i}cosA}+\underset{ } {\mathrm{j}sinA}\:\mathrm{and} \\ $$$$\underset{ } {\hat {\mathrm{b}}}=\underset{ } {\mathrm{i}cosB}−\underset{ } {\mathrm{j}sinB},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{cos}\left(\mathrm{A}+\mathrm{B}\right)= \\ $$$$\mathrm{cosAcosB}−\mathrm{sinAsinB}. \\ $$
Question Number 58313 Answers: 2 Comments: 2
Question Number 54334 Answers: 1 Comments: 1
Question Number 54322 Answers: 3 Comments: 0
Question Number 54312 Answers: 1 Comments: 2
Question Number 54289 Answers: 2 Comments: 5
Question Number 54286 Answers: 2 Comments: 2
Question Number 54281 Answers: 0 Comments: 1
Question Number 54278 Answers: 0 Comments: 4
$${If}\:{f}\:{be}\:{n}\rightarrow{n}\:\:\:\left({n}\in\mathbb{N}\right)\:{and}\:{is}\:{increasing}, \\ $$$${f}\left({f}\left({n}\right)\right)=\mathrm{3}{n};\:{find}\:{f}\left(\mathrm{2}\right). \\ $$$${options}:\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\mathrm{4}\:. \\ $$
Question Number 54271 Answers: 1 Comments: 1
Question Number 54270 Answers: 2 Comments: 0
$${Find}\:{the}\:{equation}\:{to}\:{two} \\ $$$${circles}\:{which}\:{touch}\:{the}\: \\ $$$${x}−{axis}\:{at}\:{the}\:{origin} \\ $$$${and}\:{also}\:{touch}\:{the}\:{line} \\ $$$$\mathrm{12}{x}+\mathrm{5}{y}=\mathrm{60} \\ $$
Question Number 54268 Answers: 0 Comments: 1
Question Number 54259 Answers: 1 Comments: 1
Question Number 54258 Answers: 0 Comments: 1
Question Number 54273 Answers: 2 Comments: 0
Question Number 54248 Answers: 2 Comments: 1
Question Number 54242 Answers: 2 Comments: 0
Question Number 54240 Answers: 1 Comments: 1
Pg 1554 Pg 1555 Pg 1556 Pg 1557 Pg 1558 Pg 1559 Pg 1560 Pg 1561 Pg 1562 Pg 1563
Terms of Service
Privacy Policy
Contact: info@tinkutara.com