Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1556

Question Number 48194    Answers: 1   Comments: 1

A body of mass 0.1kg dropped from a height of 8m onto a hard floor bounces back to a height of 2m. Calculate the change of momentum. If the body is in contact with the floor for 0.1s then what is the force exerted on the body? [g=10ms^(−2) ]

$${A}\:{body}\:{of}\:{mass}\:\mathrm{0}.\mathrm{1}{kg}\:{dropped}\:{from} \\ $$$${a}\:{height}\:{of}\:\mathrm{8}{m}\:{onto}\:{a}\:{hard}\:{floor} \\ $$$${bounces}\:{back}\:{to}\:{a}\:{height}\:{of}\:\mathrm{2}{m}. \\ $$$${Calculate}\:{the}\:{change}\:{of}\:{momentum}. \\ $$$${If}\:{the}\:{body}\:{is}\:{in}\:{contact}\:{with}\:{the} \\ $$$${floor}\:{for}\:\mathrm{0}.\mathrm{1}{s}\:{then}\:{what}\:{is}\:{the} \\ $$$${force}\:{exerted}\:{on}\:{the}\:{body}? \\ $$$$\left[{g}=\mathrm{10}{ms}^{−\mathrm{2}} \right] \\ $$

Question Number 48193    Answers: 1   Comments: 0

In the equation ax^2 +bx+c=0 one root is square of orther.without solving the equation.prove that c(a−b)^3 =a(c−b)^3

$${In}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${one}\:{root}\:{is}\:{square}\:{of}\: \\ $$$${orther}.{without}\:{solving} \\ $$$${the}\:{equation}.{prove}\:{that} \\ $$$${c}\left({a}−{b}\right)^{\mathrm{3}} ={a}\left({c}−{b}\right)^{\mathrm{3}} \\ $$

Question Number 48187    Answers: 0   Comments: 0

The data arranged below in the form of a table was obtained for a motor cyclist of total mass 120kg traveling from Sun city towards Delta state. velocity/ms^(−1) 00 20 40 50 50 60 70 85 time,t/s 00 5 10 12 20 35 40 45 i) plot a graph of velocity(y−axis) against time(x−axis) ii) Detemine the acceleration of the cyclist for the first part of the motion iii) Calculate the pull of the engine during the first 12.5s if this section of the road is horizontal and friction with all other forces is negligible. iv)what is the momentum change during the first 12.5^(th) second v) detemine the kinetic energy of the cyclist at the 37.5^(th) second vi) for how long is the resultant force zero on the cyclist during motion?

$$\mathrm{The}\:\mathrm{data}\:\mathrm{arranged}\:\mathrm{below}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{table}\:\mathrm{was}\:\mathrm{obtained} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{motor}\:\mathrm{cyclist}\:\mathrm{of}\:\mathrm{total}\:\mathrm{mass}\:\mathrm{120}{kg}\:{traveling}\:{from}\: \\ $$$${Sun}\:{city}\:{towards}\:{Delta}\:{state}. \\ $$$$ \\ $$$${velocity}/{ms}^{−\mathrm{1}} \:\:\mathrm{00}\:\:\:\:\:\mathrm{20}\:\:\:\:\:\mathrm{40}\:\:\:\mathrm{50}\:\:\:\:\:\mathrm{50}\:\:\:\:\mathrm{60}\:\:\:\mathrm{70}\:\:\:\:\mathrm{85} \\ $$$$\:\:\:\:\:{time},{t}/{s}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{00}\:\:\:\:\:\mathrm{5}\:\:\:\:\:\:\:\mathrm{10}\:\:\:\:\mathrm{12}\:\:\:\:\:\mathrm{20}\:\:\:\mathrm{35}\:\:\:\:\mathrm{40}\:\:\:\:\mathrm{45} \\ $$$$\left.{i}\right)\:{plot}\:{a}\:{graph}\:{of}\:{velocity}\left({y}−{axis}\right)\:{against}\:{time}\left({x}−{axis}\right) \\ $$$$\left.{ii}\right)\:{Detemine}\:{the}\:{acceleration}\:{of}\:{the}\:{cyclist}\:{for}\:{the}\:{first}\:{part}\:{of}\:{the}\:{motion} \\ $$$$\left.{iii}\right)\:{Calculate}\:{the}\:{pull}\:{of}\:{the}\:{engine}\:{during}\:{the}\:{first}\:\mathrm{12}.\mathrm{5}{s} \\ $$$${if}\:{this}\:{section}\:{of}\:{the}\:{road}\:{is}\:{horizontal}\:{and}\:{friction}\:{with}\:{all} \\ $$$${other}\:{forces}\:{is}\:{negligible}. \\ $$$$\left.{iv}\right){what}\:{is}\:{the}\:{momentum}\:{change}\:{during}\:{the}\:{first}\:\mathrm{12}.\mathrm{5}^{{th}} \:{second} \\ $$$$\left.{v}\right)\:{detemine}\:{the}\:{kinetic}\:{energy}\:{of}\:{the}\:{cyclist}\:{at}\:{the}\:\mathrm{37}.\mathrm{5}^{{th}} \:{second} \\ $$$$\left.{vi}\right)\:{for}\:{how}\:{long}\:{is}\:{the}\:{resultant}\:{force}\:{zero}\:{on}\:{the}\:{cyclist} \\ $$$${during}\:{motion}? \\ $$

Question Number 48182    Answers: 1   Comments: 0

Question Number 48178    Answers: 1   Comments: 1

find ∫ ((sin(πx))/(3 +cos(2πx)))dx

$${find}\:\:\int\:\:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{3}\:+{cos}\left(\mathrm{2}\pi{x}\right)}{dx} \\ $$

Question Number 48177    Answers: 0   Comments: 2

find lim_(x→0) ∫_(x+1) ^(2x+1) ((tarctan(t^2 +1))/(1+(1+t^2 )^2 ))dt

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\int_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:\:\frac{{tarctan}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Question Number 48175    Answers: 1   Comments: 2

calculate lim_(x→0) ∫_x ^x^2 ((ln(1+t))/(sin(t)))dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{sin}\left({t}\right)}{dt} \\ $$

Question Number 48174    Answers: 1   Comments: 1

find lim_(n→+∞) ∫_0 ^n sin(((πx)/n))dx .

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{{n}} \:\:\:{sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:. \\ $$

Question Number 48173    Answers: 1   Comments: 2

calculate ∫ ((arctan(x))/(√(1+x^2 )))dx

$${calculate}\:\int\:\:\frac{{arctan}\left({x}\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 48172    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(2cos(x^2 +1)))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left(\mathrm{2}{cos}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 48171    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(cosx))/(x^2 +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$

Question Number 48170    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((cos(sin(x^2 )))/(1+2x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({sin}\left({x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 48165    Answers: 0   Comments: 0

In a version of millikan experiment it is a charged droplet of mass 1.8x10^(−15) kg just remain stationary where the p.d between the plates which are 12mm apart is 150v. If the droplet suddenly gain an extra electron. Find (a) the acceleration of the droplet (b) the p.d to bring it back to stationary possition. PLEASE HELP

$$\mathrm{In}\:\mathrm{a}\:\mathrm{version}\:\mathrm{of}\:\mathrm{millikan}\:\mathrm{experiment}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{charged}\:\mathrm{droplet}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{8x10}^{−\mathrm{15}} \mathrm{kg} \\ $$$$\mathrm{just}\:\mathrm{remain}\:\mathrm{stationary}\:\mathrm{where}\:\mathrm{the}\:\mathrm{p}.\mathrm{d}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{plates}\:\mathrm{which}\:\mathrm{are}\:\mathrm{12mm} \\ $$$$\mathrm{apart}\:\mathrm{is}\:\mathrm{150v}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{droplet}\:\mathrm{suddenly} \\ $$$$\mathrm{gain}\:\mathrm{an}\:\mathrm{extra}\:\mathrm{electron}.\:\mathrm{Find} \\ $$$$\:\:\:\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{droplet} \\ $$$$\:\:\:\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{p}.\mathrm{d}\:\mathrm{to}\:\mathrm{bring}\:\mathrm{it}\:\mathrm{back}\:\mathrm{to}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{stationary}\:\mathrm{possition}. \\ $$$$\boldsymbol{\mathrm{P}}\mathrm{LEASE}\:\mathrm{HELP} \\ $$

Question Number 48169    Answers: 0   Comments: 1

let u_n =∫_0 ^∞ cos(nx^2 )dx and v_n =∫_0 ^∞ sin(nx^2 )dx with n >0 1) calculste u_n and v_n 2)find nsture of Σ(u_n +2v_n ) and Σ (u_n ^2 +4v_n ^2 ) 3)find nature of Σ(u_n +2v_n )^2

$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({nx}^{\mathrm{2}} \right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} {sin}\left({nx}^{\mathrm{2}} \right){dx}\:{with}\:{n}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{u}_{{n}} {and}\:{v}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}} \right)\:{and}\:\Sigma\:\left({u}_{{n}} ^{\mathrm{2}} \:+\mathrm{4}{v}_{{n}} ^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{3}\right){find}\:{nature}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}} \right)^{\mathrm{2}} \\ $$$$ \\ $$

Question Number 48161    Answers: 1   Comments: 1

f(z)=((1−z)/(1+z)) u(x,y)=.. v(x,y)=..

$${f}\left({z}\right)=\frac{\mathrm{1}−{z}}{\mathrm{1}+{z}} \\ $$$${u}\left({x},{y}\right)=.. \\ $$$${v}\left({x},{y}\right)=.. \\ $$$$ \\ $$$$ \\ $$

Question Number 48156    Answers: 2   Comments: 1

Question Number 48155    Answers: 1   Comments: 0

((√2))^x =((√3))^y x≠0 y ≠ 0 find x,y

$$\left(\sqrt{\mathrm{2}}\right)^{{x}} =\left(\sqrt{\mathrm{3}}\right)^{{y}} \\ $$$${x}\neq\mathrm{0} \\ $$$${y}\:\neq\:\mathrm{0} \\ $$$$\mathrm{find}\:{x},{y} \\ $$

Question Number 48143    Answers: 1   Comments: 1

The locus of P(x,y) such that (√(x^2 +y^2 +8y+16))−(√(x^2 +y^2 −6x+9))=5 is?

$${The}\:{locus}\:{of}\:{P}\left({x},{y}\right)\:{such}\:{that} \\ $$$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{8}{y}+\mathrm{16}}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}}=\mathrm{5}\:{is}? \\ $$

Question Number 48129    Answers: 1   Comments: 0

how we can show _3_(√2) on axis?

$$\mathrm{how}\:\mathrm{we}\:\mathrm{can}\:\mathrm{show}\:\:\:_{\mathrm{3}_{\sqrt{\mathrm{2}}} } \:\:\mathrm{on}\:\mathrm{axis}? \\ $$

Question Number 48127    Answers: 1   Comments: 0

Question Number 48121    Answers: 0   Comments: 3

can the directrix of a parabola be in the form y=mx+b ? or is there an inclined parabola with directrix and axis of symmetry in the form of y=mx+b ??

$${can}\:{the}\:{directrix}\:{of}\:{a}\:{parabola}\:{be}\:{in}\:{the}\:{form}\:{y}={mx}+{b}\:\:? \\ $$$${or}\:{is}\:{there}\:{an}\:{inclined}\:{parabola}\:{with}\:{directrix}\:{and}\:{axis}\: \\ $$$${of}\:{symmetry}\:{in}\:{the}\:{form}\:{of}\:{y}={mx}+{b}\:\:?? \\ $$

Question Number 48118    Answers: 0   Comments: 0

(√(a^2 x^2 −y^2 ))+(√(b^2 x^2 −y^2 )) = (a+b)(√(2x^2 +(x^4 /(x^4 −y^2 )))) Find x such that y is minimum. Assume x, y > 0 .

$$\sqrt{{a}^{\mathrm{2}} {x}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} {x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({a}+{b}\right)\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{4}} −{y}^{\mathrm{2}} }} \\ $$$${Find}\:{x}\:{such}\:{that}\:{y}\:{is}\:{minimum}. \\ $$$$\:\:{Assume}\:\:\:{x},\:{y}\:>\:\mathrm{0}\:. \\ $$

Question Number 48117    Answers: 0   Comments: 0

thanks sir

$${thanks}\:{sir} \\ $$

Question Number 48113    Answers: 2   Comments: 0

Question Number 48111    Answers: 1   Comments: 0

(−46−×)/(−2)=60 hi sir plx help me

$$\left(−\mathrm{46}−×\right)/\left(−\mathrm{2}\right)=\mathrm{60}\:\: \\ $$$${hi}\:{sir}\:{plx}\:{help}\:{me} \\ $$

Question Number 48105    Answers: 1   Comments: 2

∫_(−1) ^1 ((√(1+x+x^2 ))− (√(1−x−x^2 )) )dx =

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\left(\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }−\:\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }\:\right){dx}\:= \\ $$

  Pg 1551      Pg 1552      Pg 1553      Pg 1554      Pg 1555      Pg 1556      Pg 1557      Pg 1558      Pg 1559      Pg 1560   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com