Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1555

Question Number 54578    Answers: 1   Comments: 1

A particle of mass 1.5kg rests on a rough plane inclined at 45° to the horizontal. It is maintained in equilibrium by a horizontal force of p newtons. Given that the coefficient of friction between the particle and the plane is (1/4), calculate the value of p when the particle is on the point of moving i. down the plane ii. up the plane [take g=10ms^(−2) ].

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{5kg}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\: \\ $$$$\mathrm{plane}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{45}°\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{maintained}\:\mathrm{in}\:\mathrm{equilibrium}\:\mathrm{by}\:\mathrm{a}\: \\ $$$$\mathrm{horizontal}\:\mathrm{force}\:\mathrm{of}\:{p}\:\mathrm{newtons}.\:\mathrm{Given} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{particle}\:\mathrm{and}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}},\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{p}\:\mathrm{when}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{moving} \\ $$$$\mathrm{i}.\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{ii}.\:\mathrm{up}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\left[\mathrm{take}\:\mathrm{g}=\mathrm{10ms}^{−\mathrm{2}} \right]. \\ $$

Question Number 54573    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(e^(−x^2 ) ))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({e}^{−{x}^{\mathrm{2}} } \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 54566    Answers: 0   Comments: 3

lim_(n→∞) (((1+c)/(1+μ^(1/n) )))^n =? with 0≤c≤1, μ>0

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+{c}}{\mathrm{1}+\mu^{\frac{\mathrm{1}}{{n}}} }\right)^{{n}} =? \\ $$$${with}\:\mathrm{0}\leqslant{c}\leqslant\mathrm{1},\:\mu>\mathrm{0} \\ $$

Question Number 54563    Answers: 1   Comments: 1

If ((sin^3 α)/(sin β)) + ((cos^3 α)/(cos β)) = 1 show that sin 2α+2sin (α+β)=0

$$\mathrm{If}\:\frac{\mathrm{sin}\:^{\mathrm{3}} \alpha}{\mathrm{sin}\:\beta}\:+\:\frac{\mathrm{cos}\:^{\mathrm{3}} \alpha}{\mathrm{cos}\:\beta}\:=\:\mathrm{1}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{2sin}\:\left(\alpha+\beta\right)=\mathrm{0} \\ $$

Question Number 54562    Answers: 1   Comments: 0

Question Number 54556    Answers: 0   Comments: 4

∫_(−2π^2 ) ^(2π^2 ) ((sin (x^2 ))/x^2 ) dx

$$\int_{−\mathrm{2}\pi^{\mathrm{2}} } ^{\mathrm{2}\pi^{\mathrm{2}} } \frac{\mathrm{sin}\:\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 54543    Answers: 1   Comments: 1

Prove that: ((z^2 − 1)/(z^2 + 1)) = i tan(θ) where z = cos(θ) + i sin(θ)

$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{z}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:=\:\:\mathrm{i}\:\mathrm{tan}\left(\theta\right) \\ $$$$\mathrm{where}\:\:\:\:\:\mathrm{z}\:\:=\:\:\mathrm{cos}\left(\theta\right)\:+\:\mathrm{i}\:\mathrm{sin}\left(\theta\right) \\ $$

Question Number 54541    Answers: 1   Comments: 0

The value of x between 0 and 2π which satisfy the equation sin x (√(8 cos^2 x)) = 1 are in AP Find the common difference.

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{between}\:\:\:\mathrm{0}\:\:\mathrm{and}\:\:\:\mathrm{2}\pi\: \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{sin}\:{x}\:\sqrt{\mathrm{8}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:=\:\mathrm{1}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}. \\ $$

Question Number 54537    Answers: 1   Comments: 2

tan^2 20+tan^2 40+tan^2 80=33 (please solve this and i want to know that which standard that question belongs?) help needed

$${tan}^{\mathrm{2}} \mathrm{20}+{tan}^{\mathrm{2}} \mathrm{40}+{tan}^{\mathrm{2}} \mathrm{80}=\mathrm{33}\:\:\: \\ $$$$\left({please}\:{solve}\:{this}\:{and}\:{i}\:{want}\:{to}\:{know}\:\right. \\ $$$$\left.{that}\:{which}\:{standard}\:{that}\:{question}\:{belongs}?\right) \\ $$$${help}\:{needed} \\ $$

Question Number 54536    Answers: 1   Comments: 0

If A,B,C are angles of a triangle show that tan^(−1) (cot Acot B)+tan^(−1) (cot Bcot C)+tan^(−1) (cot Ccot A) = tan^(−1) {1+((8cos Acos Bcos C)/(sin^2 2A+sin^2 2B+sin^2 2C))}

$$\mathrm{If}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{are}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Acot}\:\mathrm{B}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Bcot}\:\mathrm{C}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Ccot}\:\mathrm{A}\right) \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left\{\mathrm{1}+\frac{\mathrm{8cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2B}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2C}}\right\} \\ $$

Question Number 54526    Answers: 1   Comments: 1

Question Number 54517    Answers: 2   Comments: 0

Prove that (((√(h+1))−1)/h) = (1/((√(h+1))+1)) please...

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$ \\ $$$$\frac{\sqrt{{h}+\mathrm{1}}−\mathrm{1}}{{h}}\:=\:\frac{\mathrm{1}}{\sqrt{{h}+\mathrm{1}}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{please}... \\ $$

Question Number 54529    Answers: 1   Comments: 2

∫5cos x−4sin x/2cos x+sin x dx

$$\int\mathrm{5cos}\:{x}−\mathrm{4sin}\:{x}/\mathrm{2cos}\:{x}+\mathrm{sin}\:{x}\:{dx} \\ $$

Question Number 54513    Answers: 1   Comments: 0

Calculate the interquartile range: 20,26,27,30,34,41,41,64,65,65,72,85

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{interquartile}\:\mathrm{range}: \\ $$$$\mathrm{20},\mathrm{26},\mathrm{27},\mathrm{30},\mathrm{34},\mathrm{41},\mathrm{41},\mathrm{64},\mathrm{65},\mathrm{65},\mathrm{72},\mathrm{85} \\ $$

Question Number 54506    Answers: 3   Comments: 0

L′Hopital rule lim_(x→α) ((f(x))/(g(x)))=lim_(x→α) ((f ′(x))/(g′(x)))= ((f ′(α))/(g′(α))) f ′(x)=(d/dx)f(x) , g′(x)=(d/dx)g(x) differential What is it? Proof of the rule.. plz :)

$${L}'{Hopital}\:{rule} \\ $$$$\underset{{x}\rightarrow\alpha} {\mathrm{lim}}\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\underset{{x}\rightarrow\alpha} {\mathrm{lim}}\:\frac{{f}\:'\left({x}\right)}{{g}'\left({x}\right)}=\:\frac{{f}\:'\left(\alpha\right)}{{g}'\left(\alpha\right)} \\ $$$${f}\:'\left({x}\right)=\frac{{d}}{{dx}}{f}\left({x}\right)\:,\:{g}'\left({x}\right)=\frac{{d}}{{dx}}{g}\left({x}\right)\:{differential} \\ $$$$\left.{What}\:{is}\:{it}?\:{Proof}\:{of}\:{the}\:{rule}..\:\mathrm{plz}\::\right) \\ $$

Question Number 54504    Answers: 1   Comments: 0

please,Sir. Would u explain to me how ? if f((x/(x − 1))) + 2f(((x − 1)/x)) = (x/(x − 1)) , then f(x) is ....

$$\boldsymbol{\mathrm{please}},\boldsymbol{\mathrm{Sir}}.\:\:\:\boldsymbol{\mathrm{Would}}\:\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{explain}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{how}}\:? \\ $$$$\boldsymbol{\mathrm{if}}\:\:\boldsymbol{{f}}\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}\:−\:\mathrm{1}}\right)\:\:+\:\:\mathrm{2}\boldsymbol{{f}}\left(\frac{\boldsymbol{{x}}\:−\:\mathrm{1}}{\boldsymbol{{x}}}\right)\:\:=\:\:\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}\:−\:\mathrm{1}}\:\:\:, \\ $$$$\boldsymbol{\mathrm{then}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:\:\boldsymbol{\mathrm{is}}\:.... \\ $$

Question Number 54502    Answers: 0   Comments: 5

In △ABC cos A+cos B+cos C=(3/2) prove that trianle is equilateral

$${In}\:\bigtriangleup{ABC}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${prove}\:{that}\:{trianle}\:{is}\:{equilateral} \\ $$

Question Number 54480    Answers: 2   Comments: 0

show that tan α +tan (α+((2Λ^− )/5)) +tan (α+((4Λ^− )/5)) +tan (α+((6Λ^− )/5)) + tan (α+((8Λ^− )/5)) = 5tan 5α

$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}\:\alpha\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{2}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{4}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\mathrm{tan}\:\left(\alpha+\frac{\mathrm{6}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:+\:\mathrm{tan}\:\left(\alpha+\frac{\mathrm{8}\overset{−} {\Lambda}}{\mathrm{5}}\right)\:=\:\mathrm{5tan}\:\mathrm{5}\alpha \\ $$

Question Number 54481    Answers: 1   Comments: 1

Question Number 54473    Answers: 1   Comments: 0

Solve for x: 2^(2x − 4) = x^2

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\mathrm{2}^{\mathrm{2x}\:−\:\mathrm{4}} \:\:=\:\:\mathrm{x}^{\mathrm{2}} \\ $$

Question Number 54472    Answers: 1   Comments: 0

If A, B, C are angle of a triangle, show that tanA + tanB + tanC = tanA tanB tanC

$$\mathrm{If}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle},\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\mathrm{tanA}\:+\:\mathrm{tanB}\:+\:\mathrm{tanC}\:\:=\:\:\mathrm{tanA}\:\mathrm{tanB}\:\mathrm{tanC} \\ $$

Question Number 54468    Answers: 0   Comments: 0

First three terms of the sequence given by a_1 =1, a_n =a_(n−1) +2a_(n−2) are in

$$\mathrm{First}\:\mathrm{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{given} \\ $$$$\mathrm{by}\:\:{a}_{\mathrm{1}} =\mathrm{1},\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{a}_{{n}−\mathrm{2}} \:\mathrm{are}\:\mathrm{in} \\ $$

Question Number 54466    Answers: 1   Comments: 1

((6+(√((6)^2 −4(1)(10))))/2)

$$\frac{\mathrm{6}+\sqrt{\left(\mathrm{6}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{10}\right)}}{\mathrm{2}} \\ $$$$ \\ $$

Question Number 54462    Answers: 1   Comments: 1

Question Number 54460    Answers: 1   Comments: 0

Solve (dy/dx)+3x=5

$${Solve}\:\frac{{dy}}{{dx}}+\mathrm{3}{x}=\mathrm{5} \\ $$

Question Number 54457    Answers: 0   Comments: 0

  Pg 1550      Pg 1551      Pg 1552      Pg 1553      Pg 1554      Pg 1555      Pg 1556      Pg 1557      Pg 1558      Pg 1559   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com