let f(a) =∫_0 ^∞ ((ln(x))/(x^2 +a)) with a>0
1) calculate f(a) intermsof a
2) find the values of ∫_0 ^∞ ((ln(x))/(x^2 +1))dx and ∫_0 ^∞ ((ln(x))/(x^2 +2))dx
3) let g(a) =∫_0 ^∞ ((ln(x))/((x^2 +a)^n )) dx .calculate g(a) interms of a
4) find values> of ∫_0 ^∞ ((ln(x))/((x^2 +3)^2 ))dx
5) find nature of the serie Σ f(n) andΣ g(n)
Let x_1 , x_2 , x_3 the number real
x_1 <x_2 <x_3 . T : P_2 →R^3 defined
with rule T= [((P(x_1 ))),((P(x_2 ))),((P(x_3 ))) ]
for all P(x) ∈ P_2
a) Prove that T form linear transformation
b) check whether T bijektive
Let vector set {u_1 , u_2 , u_3 , u_4 } in C^n
free linear. So that
{u_1 +αu_2 , u_2 +αu_3 , u_3 +αu_4 , u_4 +αu_1 }
too free linear , scalar α have to...