Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1555
Question Number 55129 Answers: 1 Comments: 1
$$\mathrm{question}\:\mathrm{54995}\:\mathrm{reposted} \\ $$$$\int\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} }{dx}=? \\ $$
Question Number 55126 Answers: 0 Comments: 0
Question Number 55119 Answers: 1 Comments: 1
$$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers},\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5},\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{made}\:\mathrm{with}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{2},\mathrm{3},\mathrm{4}\:\mathrm{and}\:\mathrm{5}\:\mathrm{where} \\ $$$$\mathrm{no}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{being}\:\mathrm{used}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{number}? \\ $$
Question Number 55115 Answers: 0 Comments: 4
Question Number 55108 Answers: 0 Comments: 0
Question Number 55104 Answers: 0 Comments: 3
Question Number 55100 Answers: 1 Comments: 5
Question Number 55099 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:{n}\:\in\:\mathbb{N}, \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{P}_{{r}} ^{{n}} \:=\:\lfloor{n}!\:{e}\rfloor \\ $$$$\mathrm{where}\:\lfloor{x}\rfloor\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\leqslant\:{x} \\ $$$$\mathrm{and}\:{P}_{{r}} ^{{n}} \:=\:\frac{{n}!}{\left({n}\:−\:{r}\right)!} \\ $$
Question Number 55089 Answers: 0 Comments: 1
$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }\:{dx}\:= \\ $$
Question Number 55088 Answers: 0 Comments: 0
Question Number 55087 Answers: 0 Comments: 1
$$\mathrm{Please}\:\mathrm{any}\:\mathrm{web}\:\mathrm{site}\:\mathrm{or}\:\mathrm{ebook}\:\mathrm{to}\:\mathrm{learn} \\ $$$${LATEX}\:? \\ $$$$\mathrm{Thank}\:\mathrm{you}. \\ $$
Question Number 55094 Answers: 2 Comments: 2
$$\frac{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{16}}\:+\:\frac{\mathrm{1}}{\mathrm{36}}\:+\:\frac{\mathrm{1}}{\mathrm{64}}\:+\:...}{\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{9}}\:+\:\frac{\mathrm{1}}{\mathrm{25}}\:+\:\frac{\mathrm{1}}{\mathrm{49}}\:+\:...}\:\:=\:\:{x} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:−\:\mathrm{1}\:\:=\:\:? \\ $$
Question Number 55083 Answers: 0 Comments: 0
Question Number 55076 Answers: 1 Comments: 0
$$\mathrm{Known}\:\mathrm{polynom} \\ $$$$\mathrm{P}\left({z}\right)={a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +\ldots+{a}_{{n}\:} \mathrm{With} \\ $$$$\mathrm{explain}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{If}\:{z}_{\mathrm{0}} =\mathrm{3}−\mathrm{4}{i} \\ $$$$\mathrm{form}\:\mathrm{root}\:\mathrm{is}\:\mathrm{from}\:\mathrm{polynom}, \\ $$$$\mathrm{then}\:\mathrm{one}\:\mathrm{other}\:\mathrm{root}\:\mathrm{defonitely}\:\mathrm{appeared} \\ $$$$\mathrm{is}.. \\ $$
Question Number 55070 Answers: 0 Comments: 1
$$\mathrm{Factorised}\:\mathrm{the}\:\mathrm{polynom}\:{z}^{\mathrm{4}} +\mathrm{1}\: \\ $$$$\mathrm{be}\:\mathrm{polynom}\:\mathrm{with}\:\mathrm{lower}\:\mathrm{degree}, \\ $$$$\mathrm{but}\:\mathrm{have}\:\mathrm{real}\:\mathrm{coefficient} \\ $$
Question Number 55069 Answers: 1 Comments: 3
$$\mathrm{Known}\:\mathrm{analytic}\:\mathrm{function} \\ $$$${f}\left({z}\right)=\frac{\mathrm{2}\left({z}−\mathrm{2}\right)}{{z}\left({z}−\mathrm{4}\right)} \\ $$$$\mathrm{and}\:\mathrm{written}\:\mathrm{as}\:{f}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\propto} {\Sigma}}\:{a}_{{n}} \left({z}−\mathrm{1}\right)^{{n}} \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{100}} \:\mathrm{is}... \\ $$
Question Number 55068 Answers: 0 Comments: 0
$$\mathrm{Calculate}\:\mathrm{value}\:\mathrm{of}\:\int_{{C}} {e}^{\frac{\mathrm{2}}{{z}}} \:{dz} \\ $$$$\mathrm{if}\:{C}\:\mathrm{is}\:\mathrm{unit}\:\mathrm{circle} \\ $$$$ \\ $$
Question Number 55067 Answers: 0 Comments: 0
$$\mathrm{Known}\:\:{C}\:\mathrm{circle}\:\mathrm{centered}\:\mathrm{at}\:\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{value}\:\mathrm{than}\:\int_{{C}} \frac{{dz}}{\mathrm{1}−{z}} \\ $$
Question Number 55066 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{radius}\:\mathrm{convergence}\:\mathrm{for}\:\mathrm{series} \\ $$$$\mathrm{1}−{z}^{\mathrm{2}} +{z}^{\mathrm{4}} −{z}^{\mathrm{6}} +... \\ $$
Question Number 55059 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{root}\:\mathrm{equation} \\ $$$${z}^{\mathrm{4}} −\mathrm{5}{z}+\mathrm{1}=\mathrm{0}\:\mathrm{in}\:\mathrm{1}\:\leqslant\:\mid{z}\mid\:\leqslant\:\mathrm{2} \\ $$
Question Number 55058 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{P}_{{n}} \left({z}\right)={a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +...+{a}_{{n}−\mathrm{1}} {z}+{a}_{{n}} \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{have}\:\mathrm{one}\:\:\mathrm{value}\:\mathrm{of}\:\mathrm{zero} \\ $$
Question Number 55057 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{Ln}\left({z}+\mathrm{1}\right)={z}−\frac{{z}^{\mathrm{2}} }{\mathrm{2}}+\frac{{z}^{\mathrm{3}} }{\mathrm{3}}−\frac{{z}^{\mathrm{4}} }{\mathrm{4}}+... \\ $$$$\mathrm{for}\:\mid{z}\mid<\:\mathrm{1} \\ $$
Question Number 55055 Answers: 1 Comments: 0
Question Number 55054 Answers: 0 Comments: 0
Question Number 55052 Answers: 0 Comments: 3
Question Number 55051 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+...+{x}^{{n}} } \\ $$
Pg 1550 Pg 1551 Pg 1552 Pg 1553 Pg 1554 Pg 1555 Pg 1556 Pg 1557 Pg 1558 Pg 1559
Terms of Service
Privacy Policy
Contact: info@tinkutara.com