Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1555
Question Number 54013 Answers: 1 Comments: 0
$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} =−\mathrm{4}.\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 54011 Answers: 1 Comments: 2
$${calculate}\:{f}\left({a}\right)\:=\int\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{ax}}−\sqrt{\mathrm{1}−{ax}}}\:\:{with}\:{a}>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:{U}_{{n}} =\int_{−\frac{\mathrm{1}}{{na}}} ^{\frac{\mathrm{1}}{{na}}} \:\:\frac{{dx}}{\sqrt{\mathrm{1}+{ax}}−\sqrt{\mathrm{1}−{ax}}}\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}>\mathrm{1} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:\:\:{and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 53998 Answers: 0 Comments: 1
$$\mathrm{In}\:\mathrm{the}\:\mathrm{next}\:\mathrm{link},\:\mathrm{Barry}\:\mathrm{Barrish},\:\mathrm{who}\:\mathrm{won}\:\mathrm{the}\:\mathrm{physic}\:\mathrm{nobel}\:\mathrm{prize}\:\mathrm{in}\:\mathrm{2017}; \\ $$$$\mathrm{gave}\:\mathrm{an}\:\mathrm{exclusive}\:\mathrm{interview}\:\mathrm{to}\:\mathrm{IFT}-{Instituto}\:{de}\:{Fisica}\:{Te}\acute {{o}rica}-\left(\mathrm{part}\:\mathrm{1}\right): \\ $$
Question Number 53967 Answers: 2 Comments: 1
$$\left.\mathrm{1}\right){calculate}\:{A}_{{t}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{sinxdx}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{by}\:{using}\:{Fubuni}\:{theorem}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}{dx}\:. \\ $$
Question Number 53966 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={xsinx}\:,\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{Fourier}\:{serie}\:. \\ $$
Question Number 53965 Answers: 1 Comments: 0
$${solve}\:\:\left({x}+\mathrm{1}\right){y}^{''} \:+\left(\mathrm{2}−\mathrm{3}{x}^{\mathrm{2}} \right){y}^{'} \:={xsin}\left({x}\right) \\ $$$${let}\:{y}^{'} ={z}\:\:\:{so}\:\left({e}\right)\:\Leftrightarrow\left({x}+\mathrm{1}\right){z}^{'} \:+\left(\mathrm{2}−\mathrm{3}{x}^{\mathrm{2}} \right){z}\:={xsinx}\left({e}\right)\:{let}\:{first}\:{find}\:{z} \\ $$$$\left({he}\right)\:\rightarrow\left({x}+\mathrm{1}\right){z}^{'} \:+\left(\mathrm{2}−\mathrm{3}{x}^{\mathrm{2}} \right){z}\:=\mathrm{0}\:\Rightarrow\left({x}+\mathrm{1}\right){z}^{'} \:=\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}\right){z}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}}{{x}+\mathrm{1}}\:\Rightarrow \\ $$$${ln}\mid{z}\mid\:=\:\int\:\:\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}}{{x}+\mathrm{1}}\:{dx}\:+{c}\:\:=\int\:\frac{\mathrm{3}\left({x}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1}}{{x}+\mathrm{1}}+{c}\:=\int\mathrm{3}\left({x}−\mathrm{1}\right){dx}\:+\int\:\frac{{dx}}{{x}+\mathrm{1}}\:+{c} \\ $$$$\left.=\mathrm{3}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right)+{ln}\mid{x}+\mathrm{1}\mid\:+{c}\:\Rightarrow{z}\:={K}\mid{x}+\mathrm{1}\mid{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:{solution}\:{on}\right]−\mathrm{1},+\infty\left[\:\Rightarrow\right. \\ $$$${z}\left({x}\right)\:={K}\left({x}+\mathrm{1}\right)\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:\:{mvc}\:{method}\:{give} \\ $$$${z}^{'} ={K}^{'} \left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:+{K}\left\{\:\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:+\left({x}+\mathrm{1}\right)\left(\mathrm{3}{x}−\mathrm{3}\right)\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \right\} \\ $$$$=\left\{\:{K}^{'} \left({x}+\mathrm{1}\right)\:+\:{K}\:+\mathrm{3}{K}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)\:\right\}\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \\ $$$$\left({e}\right)\:\Rightarrow\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} {K}^{'} \:+{K}\left({x}+\mathrm{1}\right)\:+\mathrm{3}{K}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{1}\right)\right\}\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \\ $$$$\left(\mathrm{2}−\mathrm{3}{x}^{\mathrm{2}} \right){K}\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:={xsinx}\:\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right){K}^{'} \:+{K}\:+\mathrm{3}{K}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:+{K}\left(\mathrm{2}−\mathrm{3}{x}^{\mathrm{2}} \right)\:=\frac{{xsinx}}{{x}+\mathrm{1}}\:\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right){K}^{'} \:+{K}\:−{K}\:=\frac{{xsinx}}{{x}+\mathrm{1}}\:\Rightarrow{K}^{'} \:=\frac{{xsinx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\int\:\:\:\frac{{xsinx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:+{c}_{\mathrm{0}} \:\Rightarrow{z}\left({x}\right)\:=\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \left\{\:\int\:\:\frac{{xsinx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:+{c}_{\mathrm{0}} \right\} \\ $$$$={c}_{\mathrm{0}} \left({x}+\mathrm{1}\right)\:{e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\:+\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\int_{.} ^{{x}} \:\:\:\frac{{tsint}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:{dt} \\ $$$${we}\:{have}\:{y}^{'} \left({x}\right)={z}\left({x}\right)\:\Rightarrow{y}\left({x}\right)\:=\int\:{z}\left({x}\right){dx}\:+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)\:=\int\:{c}_{\mathrm{0}} \left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} {dx}\:+\int\:\:\left\{\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{3}{x}} \:\int_{.} ^{{x}} \:\:\frac{{tsint}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{dt}\right\}{dx}\:+\lambda\:. \\ $$
Question Number 53956 Answers: 0 Comments: 1
$${give}\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {ln}\left(\mathrm{1}−{x}\right){dx}\:\:{at}\:{form}\:{of}\:{serie} \\ $$
Question Number 53957 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{1}+\mathrm{2}{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{then}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$$${we}\:{have}\:{f}^{'} \left({x}\right)=\frac{\mathrm{2}}{\mathrm{1}+\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} }\:\Rightarrow\:{f}^{\left({n}\right)} \left({x}\right)\:=\mathrm{2}\:\left\{\frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\right\}^{\left({n}−\mathrm{1}\right)} \:\:{with}\:{n}>\mathrm{0} \\ $$$${let}\:{W}\left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow{W}\left({x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}+{i}\right)\left(\mathrm{2}{x}+\mathrm{1}−{i}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\left({x}+\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}−{i}}{\mathrm{2}}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}\left({x}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left(\:{x}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}\:{but} \\ $$$$\left(\frac{\mathrm{1}}{{x}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} }\:−\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} }\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\frac{\left(\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right)}{\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)}\:\Rightarrow \\ $$$${W}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{4}{i}}\left\{\:\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} }\:−\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} }\right\}\:\Rightarrow \\ $$$${W}^{\left({n}−\mathrm{1}\right)} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}{i}}\left\{\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{{n}} }\:−\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)^{{n}} }\right\}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\mathrm{2}{i}}\left\{\:\:\:\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{{n}} }\:−\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)^{{n}} }\right\}\:{and} \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\mathrm{2}{i}}\left\{\:\:\frac{\mathrm{1}}{\left.\sqrt{\mathrm{2}}\right)^{−{n}} \:{e}^{−{i}\frac{{n}\pi}{\mathrm{4}}} }\:−\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}\right)^{−{n}} \:{e}^{{i}\frac{{n}\pi}{\mathrm{4}}} }\right\} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\mathrm{2}{i}}\left\{\:\left(\sqrt{\mathrm{2}}\right)^{{n}} \:{e}^{\frac{{in}\pi}{\mathrm{4}}} \:−\:\left(\sqrt{\mathrm{2}}\right)^{{n}} \:{e}^{−\frac{{in}\pi}{\mathrm{4}}} \right\} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\mathrm{2}{i}}\:\left(\sqrt{\mathrm{2}}\right)^{{n}} \:\mathrm{2}{i}\:{sin}\left(\frac{{n}\pi}{\mathrm{4}}\right)\:=\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\:\left(\sqrt{\mathrm{2}}\right)^{{n}} {sin}\left(\frac{{n}\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$
Question Number 53950 Answers: 0 Comments: 1
$$\:{calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right){dx}\:\:\:{with}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:\:{with}\:{x}>\mathrm{0}\:. \\ $$
Question Number 53958 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 53963 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\:{x}\mid{x}\mid\:\:\:,\:\mathrm{2}\pi\:{periodic}\:\:{odd}\: \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 53962 Answers: 1 Comments: 3
Question Number 53961 Answers: 0 Comments: 2
$${let}\:\varphi\left({x}\right)\:=\frac{{arctan}\left(\mathrm{2}{x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\varphi^{\left({n}\right)} \left({x}\right)\: \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\varphi^{\left({n}\right)} \left(\mathrm{0}\right)\:{anddevelpp}\:\varphi\:{at}\:{integr}\:{serie} \\ $$
Question Number 53960 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={arctan}\left({x}^{\mathrm{2}} \right)\:{developp}\:{f}\:{at}\:{i}\:{serie}. \\ $$$${the}\:{Q}\:.\:{is}\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 53947 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}\left[\sqrt{{k}}\right]} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$
Question Number 53935 Answers: 1 Comments: 0
$$\sqrt{\mathrm{8}^{{x}−\mathrm{2}} }×\sqrt[{{x}+\mathrm{1}}]{\mathrm{4}^{\mathrm{2}{x}−\mathrm{3}} }=\sqrt[{\mathrm{6}}]{\mathrm{2}^{\mathrm{5}{x}+\mathrm{5}} } \\ $$$$ \\ $$
Question Number 53931 Answers: 0 Comments: 1
$$\int{x}!{dx} \\ $$
Question Number 53924 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{non}−\mathrm{zero}\:\mathrm{numbers}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}, \\ $$$$\mathrm{and}\:\mathrm{tan}^{−\mathrm{1}} {x},\:\mathrm{tan}^{−\mathrm{1}} {y},\:\mathrm{tan}^{−\mathrm{1}} {z}\:\mathrm{are}\:\mathrm{also}\:\mathrm{in}\:\mathrm{AP}, \\ $$$$\mathrm{then} \\ $$
Question Number 53919 Answers: 1 Comments: 0
Question Number 53912 Answers: 3 Comments: 0
$$\begin{cases}{\mathrm{2}^{{x}} −\mathrm{2}^{{y}} =\mathrm{1}}\\{\mathrm{4}^{{x}} −\mathrm{4}^{{y}} =\frac{\mathrm{5}}{\mathrm{3}}}\end{cases} \\ $$
Question Number 53910 Answers: 1 Comments: 12
Question Number 53909 Answers: 1 Comments: 0
$${a}\:{angle}\:{is}\:\mathrm{14}°\:{more}\:{than}\:{its}\:{complement}\:\:{then}\:{its}\:{measure} \\ $$
Question Number 53907 Answers: 1 Comments: 0
Question Number 53902 Answers: 1 Comments: 3
$${How}\:{many}\:{zeros}\:{and}\:{how}\:{many}\:{ones} \\ $$$${are}\:{there}\:{in}\:{the}\:{numbers}\:{from}\:\mathrm{1}\:{to} \\ $$$$\mathrm{9999}? \\ $$$${Example}:\:{in}\:{the}\:{number}\:\mathrm{1010}\:{there} \\ $$$${are}\:\mathrm{2}\:{zeros}\:{and}\:\mathrm{2}\:{ones}. \\ $$
Question Number 53901 Answers: 1 Comments: 0
Question Number 53890 Answers: 1 Comments: 0
$$\mathrm{pls}.\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{if}\:\mathrm{y}=\frac{\mathrm{x}−\mathrm{2}}{\mathrm{2x}−\mathrm{1}}\:\mathrm{show}\:\mathrm{that}\:\left(\mathrm{2x}−\mathrm{1}\right)\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{4}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0} \\ $$
Pg 1550 Pg 1551 Pg 1552 Pg 1553 Pg 1554 Pg 1555 Pg 1556 Pg 1557 Pg 1558 Pg 1559
Terms of Service
Privacy Policy
Contact: info@tinkutara.com