Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1554

Question Number 51630    Answers: 1   Comments: 4

Question Number 51628    Answers: 0   Comments: 2

Question Number 51621    Answers: 0   Comments: 6

Question Number 51617    Answers: 1   Comments: 2

A=lim_(x→0) ((e^x −e^(−x) −2x)/x^3 )(without using L′hopital rule)

$$\mathrm{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} −{e}^{−{x}} −\mathrm{2}{x}}{{x}^{\mathrm{3}} }\left({without}\:\right. \\ $$$$\left.{using}\:{L}'\mathrm{hopital}\:\mathrm{rule}\right) \\ $$$$ \\ $$

Question Number 51614    Answers: 2   Comments: 0

Prove that length of lactus rectum when directrix are parallel to y−axis is y_1 −y_2 =((2b^2 )/a)

$${Prove}\:{that}\:{length}\:{of} \\ $$$${lactus}\:{rectum}\:{when}\: \\ $$$${directrix}\:{are}\:{parallel}\:{to} \\ $$$${y}−{axis}\:{is}\: \\ $$$${y}_{\mathrm{1}} −{y}_{\mathrm{2}} =\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}} \\ $$

Question Number 51613    Answers: 2   Comments: 0

Prove that the perpendicilar tangent to the ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 meets on the circle x^2 +y^2 =a^2 +b^2 .

$${Prove}\:{that}\:{the}\:{perpendicilar} \\ $$$${tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:{meets}\:{on}\:{the} \\ $$$${circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} . \\ $$

Question Number 51612    Answers: 2   Comments: 0

Find the equation of the ellipse with ecentricity (1/2) and the focus (2,1) Does the line x=3 touches ellipse.if so at what point?if line x=5 is the line of direction.

$${Find}\:{the}\:{equation}\:{of} \\ $$$${the}\:{ellipse}\:{with}\:{ecentricity} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{the}\:{focus}\:\left(\mathrm{2},\mathrm{1}\right) \\ $$$${Does}\:{the}\:{line}\:{x}=\mathrm{3}\:{touches} \\ $$$${ellipse}.{if}\:{so}\:{at}\:{what}\: \\ $$$${point}?{if}\:{line}\:{x}=\mathrm{5}\:{is}\:{the} \\ $$$${line}\:{of}\:{direction}. \\ $$

Question Number 51600    Answers: 1   Comments: 1

solve (sinθ)Z^2 −i(cosθ)Z+(1/4) sinθ=0

$$\mathrm{solve} \\ $$$$\left(\mathrm{sin}\theta\right)\mathrm{Z}^{\mathrm{2}} −\mathrm{i}\left(\mathrm{cos}\theta\right)\mathrm{Z}+\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{sin}\theta=\mathrm{0} \\ $$

Question Number 51594    Answers: 0   Comments: 0

Question Number 51592    Answers: 0   Comments: 4

Question Number 51590    Answers: 2   Comments: 1

The line y=mx+c touches ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 prove that the foot of perpendicular from focus into this line lie on auxillary circle x^2 +y^2 =a^2

$${The}\:{line}\:{y}={mx}+{c}\:{touches} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${prove}\:{that}\:{the}\:{foot}\:{of}\: \\ $$$${perpendicular}\:{from} \\ $$$${focus}\:{into}\:{this}\:{line}\:{lie}\:{on} \\ $$$${auxillary}\:{circle}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$

Question Number 51588    Answers: 1   Comments: 0

The tangent at P to an ellipse meets directrix at Q prove that the line joining the corresponding focus to P and Q are perpendicular

$${The}\:{tangent}\:{at}\:{P}\:\:{to}\:{an}\:{ellipse} \\ $$$${meets}\:{directrix}\:{at}\:{Q} \\ $$$${prove}\:{that}\:{the}\:{line} \\ $$$${joining}\:{the}\:{corresponding} \\ $$$${focus}\:{to}\:{P}\:{and}\:{Q}\:{are} \\ $$$${perpendicular} \\ $$

Question Number 51605    Answers: 0   Comments: 0

Question Number 51571    Answers: 1   Comments: 0

If α − jβ = (1/(a − jb)) , where α, β, a, b are real, express b in terms of α, β Answer: ((− β)/(α^2 + β^2 − 2α + 1))

$$\mathrm{If}\:\:\:\alpha\:−\:\mathrm{j}\beta\:\:=\:\:\frac{\mathrm{1}}{\mathrm{a}\:−\:\mathrm{jb}}\:\:,\:\:\:\:\:\:\mathrm{where}\:\:\:\alpha,\:\beta,\:\mathrm{a},\:\mathrm{b}\:\:\mathrm{are}\:\mathrm{real},\:\mathrm{express}\:\:\mathrm{b}\:\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\:\alpha,\:\beta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Answer}:\:\:\:\:\:\:\:\:\:\:\frac{−\:\beta}{\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:−\:\mathrm{2}\alpha\:+\:\mathrm{1}} \\ $$

Question Number 51558    Answers: 1   Comments: 3

Question Number 51552    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) ((arctan(1+x^2 ))/(x^2 +4))dx

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 51551    Answers: 2   Comments: 2

find f(λ) = ∫_0 ^(π/4) (√(1+λtant))dt with λ>0 also calculate ∫_0 ^(π/4) ((tant)/(√(1+λtant)))dt.

$${find}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\lambda{tant}}{dt}\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$${also}\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\sqrt{\mathrm{1}+\lambda{tant}}}{dt}. \\ $$

Question Number 51550    Answers: 1   Comments: 2

find ∫_0 ^1 (√(1+x^4 ))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 51549    Answers: 0   Comments: 0

A and B are two points from the plan (P) with AB=4 define and draw the locus of points M ∈(P) wich verify MA +MB =8 .

$${A}\:{and}\:{B}\:{are}\:{two}\:{points}\:{from}\:{the}\:{plan}\:\left({P}\right)\:{with}\:{AB}=\mathrm{4}\:{define}\:{and}\:{draw} \\ $$$${the}\:{locus}\:{of}\:{points}\:{M}\:\in\left({P}\right)\:{wich}\:{verify}\:\:\:{MA}\:+{MB}\:=\mathrm{8}\:. \\ $$

Question Number 51539    Answers: 2   Comments: 1

Question Number 51535    Answers: 1   Comments: 1

Question Number 51526    Answers: 1   Comments: 1

Question Number 51510    Answers: 1   Comments: 0

Question Number 51508    Answers: 0   Comments: 0

A man walking due to west along a level road observes a school in a direction N 72° E. After walking 1500 yards, he observes it in a direction N 67° E. How far is the school from the road.

$$\mathrm{A}\:\mathrm{man}\:\mathrm{walking}\:\mathrm{due}\:\mathrm{to}\:\mathrm{west}\:\mathrm{along}\:\mathrm{a}\:\mathrm{level}\:\mathrm{road}\:\mathrm{observes}\:\mathrm{a}\:\mathrm{school}\:\mathrm{in}\:\mathrm{a}\:\mathrm{direction}\:\mathrm{N}\:\mathrm{72}°\:\mathrm{E}.\:\mathrm{After}\:\mathrm{walking}\:\mathrm{1500}\:\mathrm{yards},\: \\ $$$$\mathrm{he}\:\mathrm{observes}\:\mathrm{it}\:\mathrm{in}\:\mathrm{a}\:\mathrm{direction}\:\mathrm{N}\:\mathrm{67}°\:\mathrm{E}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{the}\:\mathrm{school}\:\mathrm{from}\:\mathrm{the}\:\mathrm{road}. \\ $$

Question Number 51502    Answers: 0   Comments: 1

Question Number 51501    Answers: 1   Comments: 0

  Pg 1549      Pg 1550      Pg 1551      Pg 1552      Pg 1553      Pg 1554      Pg 1555      Pg 1556      Pg 1557      Pg 1558   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com