Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1544

Question Number 56830    Answers: 0   Comments: 0

let A_n =Π_(k=0) ^(n−1) cos(kx) find a simple form of A_n

$${let}\:{A}_{{n}} =\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{cos}\left({kx}\right) \\ $$$$\:{find}\:{a}\:{simple}\:{form}\:{of}\:{A}_{{n}} \\ $$

Question Number 56829    Answers: 1   Comments: 0

let f(t) =∫_0 ^∞ ((cos(t(1+x^2 )))/(1+x^2 )) dx with t≥0 find a explicit form of f(t)

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$

Question Number 56828    Answers: 1   Comments: 1

study the convergence of u_(n+1) =2(√(1+u_n ^2 ))−u_n −1 with u_0 =0

$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}+\mathrm{1}} =\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }−{u}_{{n}} −\mathrm{1}\:\:\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$

Question Number 56827    Answers: 1   Comments: 1

find the value of ∫_(−∞) ^(+∞) (dx/(x^4 −x^2 +3))

$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{3}} \\ $$

Question Number 56824    Answers: 2   Comments: 1

Question Number 56823    Answers: 1   Comments: 1

Question Number 56820    Answers: 0   Comments: 0

the no of traingle formed by the vertices of a decagon such that atleast one side is in common

$$\mathrm{the}\:\mathrm{no}\:\mathrm{of}\:\mathrm{traingle}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{vertices} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{decagon}\:\mathrm{such}\:\mathrm{that}\:\mathrm{atleast}\:\mathrm{one}\:\mathrm{side} \\ $$$$\mathrm{is}\:\mathrm{in}\:\mathrm{common} \\ $$

Question Number 56818    Answers: 0   Comments: 2

Question Number 56803    Answers: 2   Comments: 2

Evaluate: ∫_( 1) ^( 2) (A∙B × C) dt and ∫_( 1) ^( 2) A × (B × C) dt where, A = ti − 3j + 2tk, B = i − 2j + 2k, C = 3i + tj − k

$$\mathrm{Evaluate}:\:\:\:\int_{\:\mathrm{1}} ^{\:\mathrm{2}} \:\left(\mathrm{A}\centerdot\mathrm{B}\:×\:\mathrm{C}\right)\:\mathrm{dt}\:\:\:\:\mathrm{and}\:\:\:\int_{\:\mathrm{1}} ^{\:\mathrm{2}} \:\mathrm{A}\:×\:\left(\mathrm{B}\:×\:\mathrm{C}\right)\:\:\:\mathrm{dt} \\ $$$$\mathrm{where},\:\:\:\:\:\:\:\:\:\mathrm{A}\:\:=\:\:\mathrm{ti}\:−\:\mathrm{3j}\:+\:\mathrm{2tk},\:\:\:\:\:\:\:\mathrm{B}\:\:=\:\:\mathrm{i}\:−\:\mathrm{2j}\:+\:\mathrm{2k}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{C}\:\:=\:\:\mathrm{3i}\:+\:\mathrm{tj}\:−\:\mathrm{k} \\ $$

Question Number 56795    Answers: 1   Comments: 1

dy/dx=x

$${dy}/{dx}={x} \\ $$

Question Number 56801    Answers: 1   Comments: 0

The product of three consecutive terms of 4. The sum of the GP is −(7/3). Find the GP

$${The}\:{product}\:{of}\:{three}\:{consecutive}\:{terms} \\ $$$${of}\:\mathrm{4}.\:{The}\:{sum}\:{of}\:{the}\:{GP}\:{is}\:−\frac{\mathrm{7}}{\mathrm{3}}.\:{Find} \\ $$$${the}\:{GP} \\ $$

Question Number 56800    Answers: 0   Comments: 3

x,y,z are positive integers. find all solutions of x^2 +y^2 +1=xyz.

$${x},{y},{z}\:{are}\:{positive}\:{integers}. \\ $$$${find}\:{all}\:{solutions}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}={xyz}. \\ $$

Question Number 56813    Answers: 0   Comments: 0

study the sequence U_(n+1) =(√((1+u_n )/2)) with U_0 =a>0.

$${study}\:{the}\:{sequence}\:\:{U}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}+{u}_{{n}} }{\mathrm{2}}} \\ $$$${with}\:{U}_{\mathrm{0}} ={a}>\mathrm{0}. \\ $$

Question Number 56785    Answers: 0   Comments: 1

Question Number 56784    Answers: 0   Comments: 0

Question Number 56777    Answers: 1   Comments: 1

Question Number 56775    Answers: 0   Comments: 1

if x,y∍ℜ,show that ∣x+y∣=∣x∣+∣y∣ iff xy≥0

$${if}\:{x},{y}\backepsilon\Re,{show}\:{that}\:\mid{x}+{y}\mid=\mid{x}\mid+\mid{y}\mid\:{iff}\:{xy}\geqslant\mathrm{0} \\ $$

Question Number 56772    Answers: 1   Comments: 0

Given that : (1/( Φ )) = (Φ/( 1 + Φ )) Prove that : without using the exact value of Φ... (( 1 )/( Φ )) = Φ − 1 Thank you

$$\mathrm{Given}\:\mathrm{that}\:: \\ $$$$\:\:\:\:\frac{\mathrm{1}}{\:\Phi\:}\:\:=\:\:\frac{\Phi}{\:\mathrm{1}\:+\:\Phi\:} \\ $$$$ \\ $$$$\mathrm{Prove}\:\mathrm{that}\::\:{without}\:{using}\:{the}\:{exact} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{value}\:{of}\:\Phi... \\ $$$$\:\:\:\:\:\frac{\:\mathrm{1}\:}{\:\Phi\:}\:\:=\:\:\Phi\:−\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 56749    Answers: 1   Comments: 0

The curve y=ax^2 +bx+c crosses the y−axis at the point (0,3) and has stationary point at (1,2). Find the values of a,b and c.

$$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\:\mathrm{crosses}\:\mathrm{the} \\ $$$$\mathrm{y}−\mathrm{axis}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{3}\right)\:\mathrm{and}\:\mathrm{has} \\ $$$$\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\left(\mathrm{1},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}. \\ $$

Question Number 56747    Answers: 1   Comments: 0

∫ x^(2 ) e^x^2 dx

$$\int\:\mathrm{x}^{\mathrm{2}\:} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\:\mathrm{dx} \\ $$

Question Number 56744    Answers: 1   Comments: 0

If R be a relation on a set of real number defined by R={(x,y): x^2 +y^2 =0}, find i− R in roster form ii−Domain of R iii−Range of R

$$\mathrm{If}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{relation}\:\mathrm{on}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\mathrm{R}=\left\{\left(\mathrm{x},\mathrm{y}\right):\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{0}\right\}, \\ $$$$\mathrm{find}\: \\ $$$$\:\:\mathrm{i}−\:\mathrm{R}\:\mathrm{in}\:\mathrm{roster}\:\mathrm{form} \\ $$$$\:\:\mathrm{ii}−\mathrm{Domain}\:\mathrm{of}\:\mathrm{R} \\ $$$$\:\:\mathrm{iii}−\mathrm{Range}\:\mathrm{of}\:\mathrm{R}\: \\ $$

Question Number 56743    Answers: 1   Comments: 0

Question Number 56738    Answers: 1   Comments: 0

The tangent to the curve y=x^3 +bx, where b is constant, at x=1 passes through the points A(−1,6) and (2,−15). Find the value of b.

$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{bx},\:\mathrm{where} \\ $$$$\mathrm{b}\:\mathrm{is}\:\mathrm{constant},\:\mathrm{at}\:\mathrm{x}=\mathrm{1}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the} \\ $$$$\mathrm{points}\:\mathrm{A}\left(−\mathrm{1},\mathrm{6}\right)\:\mathrm{and}\:\left(\mathrm{2},−\mathrm{15}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{b}. \\ $$

Question Number 56732    Answers: 1   Comments: 1

Question Number 56763    Answers: 1   Comments: 0

(a) Determine the area of the largest rectangle that can be inscribed in the circle x^2 + y^2 = a^2 . (b) Name the rectangle so formed

$$\left(\mathrm{a}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{rectangle}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{a}^{\mathrm{2}} \:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Name}\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{so}\:\mathrm{formed} \\ $$

Question Number 56711    Answers: 1   Comments: 0

Find the shotest distance between the line ((x − 8)/3) = ((y − 2)/4) = ((z + 1)/1) , ((x − 3)/3) = ((y + 4)/5) = ((z −2)/2)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shotest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{line} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{x}\:−\:\mathrm{8}}{\mathrm{3}}\:=\:\frac{\mathrm{y}\:−\:\mathrm{2}}{\mathrm{4}}\:=\:\frac{\mathrm{z}\:+\:\mathrm{1}}{\mathrm{1}}\:,\:\:\:\:\:\:\:\frac{\mathrm{x}\:−\:\mathrm{3}}{\mathrm{3}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{4}}{\mathrm{5}}\:=\:\frac{\mathrm{z}\:−\mathrm{2}}{\mathrm{2}} \\ $$

  Pg 1539      Pg 1540      Pg 1541      Pg 1542      Pg 1543      Pg 1544      Pg 1545      Pg 1546      Pg 1547      Pg 1548   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com