Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1544
Question Number 55748 Answers: 1 Comments: 1
Question Number 55737 Answers: 1 Comments: 2
Question Number 55736 Answers: 1 Comments: 0
Question Number 55735 Answers: 1 Comments: 0
Question Number 55733 Answers: 0 Comments: 1
Question Number 55725 Answers: 1 Comments: 0
Question Number 55724 Answers: 0 Comments: 4
Question Number 55707 Answers: 0 Comments: 0
Question Number 55706 Answers: 0 Comments: 0
Question Number 55705 Answers: 0 Comments: 0
Question Number 55704 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{5}}{\mathrm{2}}\theta\: \\ $$$$+\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{7}}{\mathrm{2}}\theta \\ $$$$=\mathrm{sin}\:\mathrm{4}\theta+\mathrm{sin}\:\mathrm{5}\theta \\ $$
Question Number 55702 Answers: 0 Comments: 5
$${s}=\int_{\mathrm{0}} ^{\:{x}} \sqrt{\mathrm{1}+\left(\mathrm{3}{t}^{\mathrm{2}} +{p}\right)^{\mathrm{2}} }{dt}\:\:=\:? \\ $$$$\:\:\:\:{take}\:{p}=\mathrm{1}\:\:{for}\:{a}\:{special}\:{case}. \\ $$
Question Number 55701 Answers: 1 Comments: 1
$${Is}\:{true}\:{or}\:{not}\:{that}\:\mathrm{4181}\:{is}\:{the}\:{only}\:{one} \\ $$$${Fibonacci}'{s}\:{number}\:{with}\:{no}\:{prime}\:{factor} \\ $$$${which}\:{is}\:{also}\:{a}\:{Fibonacci}'{s}\:{number}? \\ $$
Question Number 55685 Answers: 1 Comments: 0
$${proof}\:{that}\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}=\mathrm{2015}\:{has}\:{exactly}\:{n}\:{real}\: \\ $$$${roots}.{o}<{a}_{\mathrm{1}} ....<{a}_{{n}} \\ $$
Question Number 55675 Answers: 0 Comments: 0
Question Number 55674 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{integer}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:{n}\:\geqslant\:\mathrm{2018}\:\mathrm{so} \\ $$$$\left(\sqrt{\mathrm{3}}+\mathrm{3}{i}\right)^{{n}} \:\mathrm{form}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{is}.. \\ $$
Question Number 55673 Answers: 0 Comments: 0
$${f}\left({z}\right)={z}\:\mathrm{Re}\left({z}\right)+\bar {{z}}\:\mathrm{Im}\left({z}\right)\:+\bar {{z}}\: \\ $$$${f}'\left({z}_{\mathrm{0}} \right)=... \\ $$
Question Number 55672 Answers: 0 Comments: 0
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{integral} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \left({z}^{\mathrm{2}} \mathrm{sin}\:\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\mathrm{sin}\:{z}\right)\:{dz}\:\mathrm{is}... \\ $$
Question Number 55671 Answers: 0 Comments: 0
$$\mathrm{Let}\:\mathrm{z}\:\in\:\mathbb{C}\:,\:\mathrm{so}\:\mid\mathrm{1}+{z}^{\mathrm{2}} \mid<\mathrm{1}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}\mid\mathrm{1}+{z}^{\mathrm{2}} \mid\geqslant\mathrm{1} \\ $$
Question Number 55669 Answers: 0 Comments: 0
Question Number 55668 Answers: 1 Comments: 3
$${Find}\:{all}\:{functions}\:{y}={f}\left({x}\right)\:{such}\:{that} \\ $$$${y}'{y}''={y}'''. \\ $$
Question Number 55666 Answers: 0 Comments: 0
Question Number 55665 Answers: 0 Comments: 0
Question Number 55663 Answers: 2 Comments: 0
Question Number 55658 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{following}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}\:}\right)\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}\:=\mathrm{2} \\ $$
Question Number 55643 Answers: 0 Comments: 1
$$\mathrm{known}\:\mathrm{function}\:{f} \\ $$$$\mathrm{diferensiable}\:\mathrm{continues}\:\mathrm{at}\:\left[{a},\:{b}\right] \\ $$$$\mathrm{If}\:{f}\left({a}\right)={f}\left({b}\right)=\mathrm{0} \\ $$$$\mathrm{and}\: \\ $$$$\int_{{a}} ^{{b}} \left[{f}\left({x}\right)\right]^{\mathrm{2}} {dx}=\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\int_{{a}} ^{{b}} {x}^{\mathrm{2}} \left[{f}'\left({x}\right)\right]^{\mathrm{2}} \:{dx}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Pg 1539 Pg 1540 Pg 1541 Pg 1542 Pg 1543 Pg 1544 Pg 1545 Pg 1546 Pg 1547 Pg 1548
Terms of Service
Privacy Policy
Contact: info@tinkutara.com