Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1544

Question Number 55637    Answers: 2   Comments: 0

Value of lim_(n→∞) n ∫_0 ^1 ((2x^n )/(x+x^(2n+1) )) dx=..

$$\mathrm{Value}\:\mathrm{of}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{{n}} }{{x}+{x}^{\mathrm{2}{n}+\mathrm{1}} }\:{dx}=.. \\ $$

Question Number 55636    Answers: 0   Comments: 0

known function f:[−5, 4]→R continues, then E={x ∈ [−5, 4] : f(x)}, then closure from E is...

$$\mathrm{known}\:\mathrm{function}\:{f}:\left[−\mathrm{5},\:\mathrm{4}\right]\rightarrow\mathbb{R}\:\mathrm{continues}, \\ $$$$\mathrm{then}\:{E}=\left\{{x}\:\in\:\left[−\mathrm{5},\:\mathrm{4}\right]\::\:{f}\left({x}\right)\right\}, \\ $$$$\mathrm{then}\:\mathrm{closure}\:\mathrm{from}\:{E}\:\mathrm{is}... \\ $$

Question Number 55635    Answers: 1   Comments: 1

Series Σ_(n=1) ^(∞) (1/n^2 )=..

$$\mathrm{Series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\Sigma}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=.. \\ $$

Question Number 55634    Answers: 1   Comments: 0

If lim_(x→c) ((a_0 +a_1 (x−c)+a_2 (x−c)^2 +...+a_n (x−c)^n )/((x−c)^n ))=0 then a_0 +a_1 +a_2 +..+a_n =..

$$\mathrm{If}\:\underset{{x}\rightarrow{c}} {\mathrm{lim}}\:\frac{{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \left({x}−{c}\right)+{a}_{\mathrm{2}} \left({x}−{c}\right)^{\mathrm{2}} +...+{a}_{{n}} \left({x}−{c}\right)^{{n}} }{\left({x}−{c}\right)^{{n}} }=\mathrm{0} \\ $$$$\mathrm{then}\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +..+{a}_{{n}} =.. \\ $$

Question Number 55633    Answers: 1   Comments: 0

Known set A⊆R not empty, If Sup A=Inf A, then set A is..

$$\mathrm{Known}\:\mathrm{set}\:{A}\subseteq\mathbb{R}\:\mathrm{not}\:\mathrm{empty}, \\ $$$$\mathrm{If}\:\mathrm{Sup}\:{A}=\mathrm{Inf}\:{A},\:\mathrm{then}\:\mathrm{set}\:{A}\:\mathrm{is}.. \\ $$

Question Number 55631    Answers: 1   Comments: 0

Question Number 55628    Answers: 2   Comments: 0

In an A.P, the sum of the first 50 terms is 6275. Write this A.P . knowing that the ratio is 5.

$${In}\:{an}\:{A}.{P},\:{the}\:{sum}\:{of}\:{the}\:{first}\:\mathrm{50}\:{terms}\:{is}\:\mathrm{6275}.\:{Write}\:\:{this}\:{A}.{P}\:.\:{knowing}\:{that}\:{the}\:{ratio}\:{is}\:\mathrm{5}. \\ $$

Question Number 55625    Answers: 0   Comments: 3

Question Number 55621    Answers: 1   Comments: 0

The function pogof(x) = x^4 + 2x^3 + 2x^2 is divisible by the half of the function of p. Find g(x).

$$\mathrm{The}\:\mathrm{function}\:\:\:\mathrm{pogof}\left(\mathrm{x}\right)\:\:=\:\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{2x}^{\mathrm{3}} \:+\:\mathrm{2x}^{\mathrm{2}} \:\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{the}\:\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{function}\:\mathrm{of}\:\:\mathrm{p}.\:\:\mathrm{Find}\:\:\mathrm{g}\left(\mathrm{x}\right). \\ $$

Question Number 55615    Answers: 1   Comments: 0

let F(α)=∫_α ^(1+α^2 ) ((sin(αx))/(1+αx^2 ))dx 1) calculate (dF/dα)(α) 2) calculate lim_(α→0) F(α)

$${let}\:{F}\left(\alpha\right)=\int_{\alpha} ^{\mathrm{1}+\alpha^{\mathrm{2}} } \:\:\frac{{sin}\left(\alpha{x}\right)}{\mathrm{1}+\alpha{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{dF}}{{d}\alpha}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{lim}_{\alpha\rightarrow\mathrm{0}} \:\:{F}\left(\alpha\right) \\ $$

Question Number 55613    Answers: 0   Comments: 5

Question Number 55592    Answers: 2   Comments: 1

lim_(x→π/3) ((cos x−sin (π/6))/((π/6)−(x/2)))=..

$$\underset{{x}\rightarrow\pi/\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{sin}\:\frac{\pi}{\mathrm{6}}}{\frac{\pi}{\mathrm{6}}−\frac{{x}}{\mathrm{2}}}=.. \\ $$

Question Number 55587    Answers: 2   Comments: 0

If 12% of a number is equal to s, what is the e% of s? A. ((es)/(12)) B. ((es)/(88)) C. ((12s)/e) D. ((12e)/s)

$$\mathrm{If}\:\mathrm{12\%}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:{s}, \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:{e\%}\:\mathrm{of}\:{s}? \\ $$$$\mathrm{A}.\:\frac{{es}}{\mathrm{12}} \\ $$$$\mathrm{B}.\:\frac{{es}}{\mathrm{88}} \\ $$$$\mathrm{C}.\:\frac{\mathrm{12}{s}}{{e}} \\ $$$$\mathrm{D}.\:\frac{\mathrm{12}{e}}{{s}} \\ $$

Question Number 55583    Answers: 1   Comments: 0

Question Number 55606    Answers: 0   Comments: 0

Question Number 55597    Answers: 1   Comments: 0

(d^2 y/dx^2 )+6y((dy/dx))^2 =0 Please solve the differential eq.

$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{6}{y}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${Please}\:{solve}\:{the}\:{differential}\:{eq}. \\ $$

Question Number 55571    Answers: 0   Comments: 1

let u_n = ∫_(π/(n+1)) ^(π/n) (√(tan(x)))dx with n≥3 1) calculate U_n interms of n and calculate lim_(n→+∞ ) U_n 2) find nature of the serie Σ_(n≥3) U_n

$${let}\:{u}_{{n}} =\:\int_{\frac{\pi}{{n}+\mathrm{1}}} ^{\frac{\pi}{{n}}} \sqrt{{tan}\left({x}\right)}{dx}\:\:{with}\:{n}\geqslant\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n}\:\:\:{and}\:{calculate}\:{lim}_{{n}\rightarrow+\infty\:\:} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{3}} \:{U}_{{n}} \\ $$

Question Number 55561    Answers: 0   Comments: 3

Question Number 55560    Answers: 1   Comments: 0

Question Number 55557    Answers: 0   Comments: 0

Goodday great minds.Its been quite a while. Please can anyone recommend any site, app or video that can explain the elevation and 3d of shapes.Please I sincerely need your help. Thanks in advance.

$${Goodday}\:{great}\:{minds}.{Its}\:{been}\:{quite}\:{a} \\ $$$${while}.\:{Please}\:{can}\:{anyone}\:{recommend} \\ $$$${any}\:{site},\:{app}\:{or}\:{video}\:{that}\:{can}\:{explain}\:{the} \\ $$$${elevation}\:{and}\:\mathrm{3}{d}\:{of}\:{shapes}.{Please}\:{I} \\ $$$${sincerely}\:{need}\:{your}\:{help}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}. \\ $$

Question Number 55539    Answers: 2   Comments: 2

Question Number 55577    Answers: 1   Comments: 1

Question Number 55576    Answers: 0   Comments: 0

An aeroplane has an air speed of 120kmh^(−1) and flies on a course of bearing S60°E. A wind is blowing steadily at 30kmh^(−1) from a bearing of N60°E. Find; i. the ground speed of the aeroplane ii. the path of the aeroplane

$$\mathrm{An}\:\mathrm{aeroplane}\:\mathrm{has}\:\mathrm{an}\:\mathrm{air}\:\mathrm{speed}\:\mathrm{of}\: \\ $$$$\mathrm{120kmh}^{−\mathrm{1}} \:\mathrm{and}\:\mathrm{flies}\:\mathrm{on}\:\mathrm{a}\:\mathrm{course}\:\mathrm{of} \\ $$$$\mathrm{bearing}\:\mathrm{S60}°\mathrm{E}.\:\mathrm{A}\:\mathrm{wind}\:\mathrm{is}\:\mathrm{blowing}\:\mathrm{steadily} \\ $$$$\mathrm{at}\:\mathrm{30kmh}^{−\mathrm{1}} \:\mathrm{from}\:\mathrm{a}\:\mathrm{bearing}\:\mathrm{of}\:\mathrm{N60}°\mathrm{E}. \\ $$$$\mathrm{Find}; \\ $$$$\mathrm{i}.\:\mathrm{the}\:\mathrm{ground}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{aeroplane} \\ $$$$\mathrm{ii}.\:\mathrm{the}\:\mathrm{path}\:\mathrm{of}\:\mathrm{the}\:\mathrm{aeroplane} \\ $$

Question Number 55534    Answers: 1   Comments: 0

A dish of mixed nut contains cashew and peanut . then two ounces of peanut are added to the dish making the new mixture of 20% cashew. Sara like cashew so she added 2 ounces of them to the dish. The mixture in the dish is now 33.33%. Cashews. what percentage of the origional mixture of nut was cashew? this was the correct question please help

$${A}\:{dish}\:{of}\:{mixed}\:{nut}\:{contains}\:{cashew} \\ $$$${and}\:{peanut}\:.\:{then}\:{two}\:{ounces}\:{of}\: \\ $$$${peanut}\:{are}\:{added}\:{to}\:{the}\:{dish}\:{making} \\ $$$${the}\:{new}\:{mixture}\:{of}\:\mathrm{20\%}\:{cashew}.\: \\ $$$${Sara}\:{like}\:{cashew}\:{so}\:{she}\:{added}\: \\ $$$$\mathrm{2}\:{ounces}\:{of}\:{them}\:{to}\:{the}\:{dish}.\:{The} \\ $$$${mixture}\:{in}\:{the}\:{dish}\:{is}\:{now}\:\:\mathrm{33}.\mathrm{33\%}.\: \\ $$$${Cashews}.\:{what}\:{percentage}\:{of}\:{the}\: \\ $$$${origional}\:{mixture}\:{of}\:{nut}\:{was}\:\: \\ $$$${cashew}?\:{this}\:{was}\:{the}\:{correct}\:{question} \\ $$$${please}\:{help} \\ $$

Question Number 55526    Answers: 1   Comments: 1

If ∫_(−1) ^4 f(x) dx = 4 and ∫_2 ^4 (3−f(x))dx=7, then ∫_( 2) ^(−1) f(x) dx =

$$\mathrm{If}\:\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:\mathrm{4}\:\mathrm{and}\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\:\left(\mathrm{3}−{f}\left({x}\right)\right){dx}=\mathrm{7}, \\ $$$$\mathrm{then}\:\:\underset{\:\mathrm{2}} {\overset{−\mathrm{1}} {\int}}\:{f}\left({x}\right)\:{dx}\:= \\ $$

Question Number 55520    Answers: 3   Comments: 2

How can solve ∫(√)tan(x)dx ?

$${How}\:{can}\:{solve}\:\int\sqrt{}\mathrm{tan}\left({x}\right){dx}\:? \\ $$

  Pg 1539      Pg 1540      Pg 1541      Pg 1542      Pg 1543      Pg 1544      Pg 1545      Pg 1546      Pg 1547      Pg 1548   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com