Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1544

Question Number 55762    Answers: 0   Comments: 0

Question Number 55760    Answers: 0   Comments: 3

let f(x) =∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dx with x from R and x≠0 1) find a explicit form of f(x) 2) extract A =Re(f(x)) and B =Im(f(x)) and find its values . 3) calculate ∫_0 ^∞ ((cos(2t))/((2t^2 +i)^2 ))dt 4) let U_n =∫_0 ^∞ ((cos(nt))/((nt^2 +i)^2 ))dt .calculate lim_(n→+∞) u_n and study the convergence of Σu_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({xt}\right)}{\left({xt}^{\mathrm{2}} +{i}\right)^{\mathrm{2}} }{dx}\:\:\:{with}\:{x}\:{from}\:{R}\:\:{and}\:{x}\neq\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{extract}\:\:{A}\:={Re}\left({f}\left({x}\right)\right)\:{and}\:\:{B}\:={Im}\left({f}\left({x}\right)\right)\:{and}\:{find}\:{its}\:{values}\:. \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{t}\right)}{\left(\mathrm{2}{t}^{\mathrm{2}} \:+{i}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({nt}\right)}{\left({nt}^{\mathrm{2}} \:+{i}\right)^{\mathrm{2}} }{dt}\:\:\:.{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$$${and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma{u}_{{n}} \\ $$$$ \\ $$

Question Number 55759    Answers: 1   Comments: 0

calculate I =∫_0 ^(2π) ((cost)/(3 +sin(2t)))dt and J =∫_0 ^(2π) ((sint)/(3 +cos(2t)))dt .

$${calculate}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cost}}{\mathrm{3}\:+{sin}\left(\mathrm{2}{t}\right)}{dt}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\mathrm{3}\:+{cos}\left(\mathrm{2}{t}\right)}{dt}\:. \\ $$

Question Number 55756    Answers: 1   Comments: 0

Find the product of all the real values of a that satisfies the equation 4∣a−4∣=∣a+4∣

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{values} \\ $$$$\mathrm{of}\:\:\:\mathrm{a}\:\:\mathrm{that}\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{4}\mid\mathrm{a}−\mathrm{4}\mid=\mid\mathrm{a}+\mathrm{4}\mid \\ $$

Question Number 55748    Answers: 1   Comments: 1

Question Number 55737    Answers: 1   Comments: 2

Question Number 55736    Answers: 1   Comments: 0

Question Number 55735    Answers: 1   Comments: 0

Question Number 55733    Answers: 0   Comments: 1

Question Number 55725    Answers: 1   Comments: 0

Question Number 55724    Answers: 0   Comments: 4

Question Number 55707    Answers: 0   Comments: 0

Question Number 55706    Answers: 0   Comments: 0

Question Number 55705    Answers: 0   Comments: 0

Question Number 55704    Answers: 1   Comments: 0

Prove that: 2 sin (1/2)θcos (3/2)θ+2sin (5/2)θ +2 sin (3/2)θ+2sin (3/2)θcos (7/2)θ =sin 4θ+sin 5θ

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{5}}{\mathrm{2}}\theta\: \\ $$$$+\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{7}}{\mathrm{2}}\theta \\ $$$$=\mathrm{sin}\:\mathrm{4}\theta+\mathrm{sin}\:\mathrm{5}\theta \\ $$

Question Number 55702    Answers: 0   Comments: 5

s=∫_0 ^( x) (√(1+(3t^2 +p)^2 ))dt = ? take p=1 for a special case.

$${s}=\int_{\mathrm{0}} ^{\:{x}} \sqrt{\mathrm{1}+\left(\mathrm{3}{t}^{\mathrm{2}} +{p}\right)^{\mathrm{2}} }{dt}\:\:=\:? \\ $$$$\:\:\:\:{take}\:{p}=\mathrm{1}\:\:{for}\:{a}\:{special}\:{case}. \\ $$

Question Number 55701    Answers: 1   Comments: 1

Is true or not that 4181 is the only one Fibonacci′s number with no prime factor which is also a Fibonacci′s number?

$${Is}\:{true}\:{or}\:{not}\:{that}\:\mathrm{4181}\:{is}\:{the}\:{only}\:{one} \\ $$$${Fibonacci}'{s}\:{number}\:{with}\:{no}\:{prime}\:{factor} \\ $$$${which}\:{is}\:{also}\:{a}\:{Fibonacci}'{s}\:{number}? \\ $$

Question Number 55685    Answers: 1   Comments: 0

proof that Σ_(i=1) ^n (a_i /(a_i −x))=2015 has exactly n real roots.o<a_1 ....<a_n

$${proof}\:{that}\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}=\mathrm{2015}\:{has}\:{exactly}\:{n}\:{real}\: \\ $$$${roots}.{o}<{a}_{\mathrm{1}} ....<{a}_{{n}} \\ $$

Question Number 55675    Answers: 0   Comments: 0

Question Number 55674    Answers: 1   Comments: 0

The smallest integer numbers with n ≥ 2018 so ((√3)+3i)^n form real numbers is..

$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{integer}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:{n}\:\geqslant\:\mathrm{2018}\:\mathrm{so} \\ $$$$\left(\sqrt{\mathrm{3}}+\mathrm{3}{i}\right)^{{n}} \:\mathrm{form}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{is}.. \\ $$

Question Number 55673    Answers: 0   Comments: 0

f(z)=z Re(z)+z^ Im(z) +z^ f′(z_0 )=...

$${f}\left({z}\right)={z}\:\mathrm{Re}\left({z}\right)+\bar {{z}}\:\mathrm{Im}\left({z}\right)\:+\bar {{z}}\: \\ $$$${f}'\left({z}_{\mathrm{0}} \right)=... \\ $$

Question Number 55672    Answers: 0   Comments: 0

The value of complex integral ∫_(∣z∣=1) (z^2 sin (1/z)+(1/z^2 )sin z) dz is...

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{integral} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \left({z}^{\mathrm{2}} \mathrm{sin}\:\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\mathrm{sin}\:{z}\right)\:{dz}\:\mathrm{is}... \\ $$

Question Number 55671    Answers: 0   Comments: 0

Let z ∈ C , so ∣1+z^2 ∣<1. Prove that 2∣1+z^2 ∣≥1

$$\mathrm{Let}\:\mathrm{z}\:\in\:\mathbb{C}\:,\:\mathrm{so}\:\mid\mathrm{1}+{z}^{\mathrm{2}} \mid<\mathrm{1}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}\mid\mathrm{1}+{z}^{\mathrm{2}} \mid\geqslant\mathrm{1} \\ $$

Question Number 55669    Answers: 0   Comments: 0

Question Number 55668    Answers: 1   Comments: 3

Find all functions y=f(x) such that y′y′′=y′′′.

$${Find}\:{all}\:{functions}\:{y}={f}\left({x}\right)\:{such}\:{that} \\ $$$${y}'{y}''={y}'''. \\ $$

Question Number 55666    Answers: 0   Comments: 0

  Pg 1539      Pg 1540      Pg 1541      Pg 1542      Pg 1543      Pg 1544      Pg 1545      Pg 1546      Pg 1547      Pg 1548   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com