Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1544

Question Number 55449    Answers: 1   Comments: 0

Question Number 55444    Answers: 0   Comments: 0

Question Number 55433    Answers: 1   Comments: 0

Question Number 55431    Answers: 1   Comments: 1

2 plane parallel conducting plates are held horizontal,one above the other in a vacuum.Electrons having a speed of 6×10^6 m/s and moves normally to the plates enter the region between them through a hole in the lower plate which is earthed.What potential must be applied to the other plate so that the electrons just fails to reach it?What is the subsequent motion of these electrons? (ratio of charge to mass of electron= 1.8×10^(11) Ckg^(−1) )

$$\mathrm{2}\:{plane}\:{parallel}\:{conducting}\:{plates}\:{are} \\ $$$${held}\:{horizontal},{one}\:{above}\:{the}\:{other}\:{in} \\ $$$${a}\:{vacuum}.{Electrons}\:{having}\:{a}\:{speed}\:{of} \\ $$$$\mathrm{6}×\mathrm{10}^{\mathrm{6}} {m}/{s}\:{and}\:{moves}\:{normally}\:{to}\:{the} \\ $$$${plates}\:{enter}\:{the}\:{region}\:{between}\:{them} \\ $$$${through}\:{a}\:{hole}\:{in}\:{the}\:{lower}\:{plate}\:{which} \\ $$$${is}\:{earthed}.{What}\:{potential}\:{must}\:{be} \\ $$$${applied}\:{to}\:{the}\:{other}\:{plate}\:{so}\:{that}\:{the} \\ $$$${electrons}\:{just}\:{fails}\:{to}\:{reach}\:{it}?{What} \\ $$$${is}\:{the}\:{subsequent}\:{motion}\:{of}\:{these} \\ $$$${electrons}? \\ $$$$\left({ratio}\:{of}\:{charge}\:{to}\:{mass}\:{of}\:{electron}=\right. \\ $$$$\left.\mathrm{1}.\mathrm{8}×\mathrm{10}^{\mathrm{11}} {Ckg}^{−\mathrm{1}} \right) \\ $$

Question Number 55422    Answers: 0   Comments: 1

Please see these questions:

$${Please}\:{see}\:{these}\:{questions}: \\ $$

Question Number 55418    Answers: 3   Comments: 1

Question Number 55401    Answers: 0   Comments: 3

any wanna blow their mind

$${any}\:{wanna}\:{blow}\:{their}\:{mind} \\ $$

Question Number 55415    Answers: 2   Comments: 0

a, b, d are gp. such that a, b, c are real. if a + b + c = 26 and a^2 + b^2 + c^2 = 364, find b ?

$$\mathrm{a},\:\mathrm{b},\:\mathrm{d}\:\:\mathrm{are}\:\mathrm{gp}.\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{are}\:\mathrm{real}.\:\:\mathrm{if}\:\: \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\mathrm{26}\:\:\:\mathrm{and}\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{364},\:\:\:\:\:\mathrm{find}\:\:\mathrm{b}\:\:? \\ $$

Question Number 55412    Answers: 0   Comments: 0

Solve for x and y. 2^x + 2y = 1 ....... equation (i) 3^(2x) + y = 27 ..... equation (ii)

$$\mathrm{Solve}\:\mathrm{for}\:\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{x}} \:+\:\mathrm{2y}\:\:=\:\:\mathrm{1}\:\:\:\:\:\:\:.......\:\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{2x}} \:+\:\mathrm{y}\:\:=\:\:\mathrm{27}\:\:\:\:\:\:\:\:.....\:\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$

Question Number 55411    Answers: 1   Comments: 0

Question Number 55410    Answers: 1   Comments: 0

Question Number 55408    Answers: 1   Comments: 0

Question Number 55375    Answers: 1   Comments: 1

Question Number 55374    Answers: 1   Comments: 0

Given matrices A(x)= [((x−1),3),(4,(x+3)) ]∈ M_2 (R). The smallest det(A(x)) is..

$$\mathrm{Given}\:\mathrm{matrices}\:{A}\left({x}\right)=\begin{bmatrix}{{x}−\mathrm{1}}&{\mathrm{3}}\\{\mathrm{4}}&{{x}+\mathrm{3}}\end{bmatrix}\in\:{M}_{\mathrm{2}} \left(\mathbb{R}\right). \\ $$$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{det}\left({A}\left({x}\right)\right)\:\mathrm{is}.. \\ $$

Question Number 55373    Answers: 1   Comments: 1

lim_(n→∝) ∫_0 ^1 ((x^n e^x^n )/(cos x)) dx=...

$$\underset{{n}\rightarrow\propto} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} {e}^{{x}^{{n}} } }{\mathrm{cos}\:{x}}\:{dx}=... \\ $$

Question Number 55368    Answers: 1   Comments: 0

Question Number 55364    Answers: 0   Comments: 0

prove that ∫_(−∞ ) ^∞ f(x)dx=1 such that f(x)=(1/((√n) β((n/2),(1/2))))(1+(x^2 /n))^(−(1/2)(1+n)) and β((n/2),(1/2))=∫_0 ^∞ (x^((n/2)−1) /((1+x)^(3/2) ))dx

$$\mathrm{prove}\:\mathrm{that}\:\int_{−\infty\:} ^{\infty} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{1} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{n}}\:\beta\left(\frac{\mathrm{n}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)}\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{n}\right)} \\ $$$$\mathrm{and}\:\beta\left(\frac{\mathrm{n}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\frac{\mathrm{n}}{\mathrm{2}}−\mathrm{1}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\mathrm{dx} \\ $$

Question Number 55362    Answers: 2   Comments: 1

Question Number 55360    Answers: 2   Comments: 1

∫_1 ^( 2) (√(sin (3x−x^2 −2)))dx + (1/2)∫_3 ^1 (√(sin(((4t−t^2 −3)/4))))dt =?

$$\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \sqrt{\mathrm{sin}\:\left(\mathrm{3}{x}−{x}^{\mathrm{2}} −\mathrm{2}\right)}{dx}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{3}} ^{\mathrm{1}} \sqrt{{sin}\left(\frac{\mathrm{4}{t}−{t}^{\mathrm{2}} −\mathrm{3}}{\mathrm{4}}\right)}{dt}\:\:=? \\ $$

Question Number 55359    Answers: 1   Comments: 0

Find a formula for the general term of the squence 1, 2, 2, 3, 3, 3, 4, 4, 4,4, ...

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the}\:\mathrm{general}\: \\ $$$$\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squence} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{2},\:\mathrm{3},\:\mathrm{3},\:\mathrm{3},\:\mathrm{4},\:\mathrm{4},\:\mathrm{4},\mathrm{4},\:... \\ $$

Question Number 55358    Answers: 0   Comments: 0

Determine all functions f : N → N satisfying xf(y)+yf(x)=(x+y)f(x^2 +y^2 ) for all positive integers x and y

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{functions}\:{f}\::\:\mathbb{N}\:\rightarrow\:\mathbb{N}\: \\ $$$$\mathrm{satisfying} \\ $$$${xf}\left({y}\right)+{yf}\left({x}\right)=\left({x}+{y}\right){f}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:{x}\:\mathrm{and}\:{y} \\ $$

Question Number 55352    Answers: 0   Comments: 0

$$\int \\ $$

Question Number 55351    Answers: 0   Comments: 0

$$ \\ $$

Question Number 55344    Answers: 0   Comments: 6

A whatsapp group contains 7 women and 3 men.If they are leaving the group one at a time from the group what is the probability of a woman leaving then a man leaving and so on alternately until only a woman is remaining?

$${A}\:{whatsapp}\:{group}\:{contains}\:\mathrm{7}\:{women} \\ $$$${and}\:\mathrm{3}\:{men}.{If}\:{they}\:{are}\:{leaving} \\ $$$${the}\:{group}\:{one}\:{at}\:{a}\:{time}\:{from}\:{the} \\ $$$${group}\:{what}\:{is}\:{the}\:{probability}\:{of}\:{a} \\ $$$${woman}\:{leaving}\:{then}\:{a}\:{man}\:{leaving} \\ $$$${and}\:{so}\:{on}\:{alternately}\:{until}\:{only}\:{a} \\ $$$${woman}\:{is}\:{remaining}? \\ $$$$ \\ $$

Question Number 55333    Answers: 1   Comments: 0

The sum of all but one of the interior angles of a convex polygon equals 2525° . find the measure of the exterior angle adjacent to the remaining interior angle. can you please help if possible with diagram

$${The}\:{sum}\:{of}\:{all}\:{but}\:{one}\:{of}\:{the}\:{interior} \\ $$$${angles}\:{of}\:{a}\:{convex}\:{polygon}\:{equals}\: \\ $$$$\mathrm{2525}°\:.\:{find}\:{the}\:{measure}\:{of}\:{the} \\ $$$${exterior}\:{angle}\:{adjacent}\:{to}\:{the} \\ $$$${remaining}\:{interior}\:{angle}.\: \\ $$$${can}\:{you}\:{please}\:{help}\:{if}\:{possible}\:{with} \\ $$$${diagram}\: \\ $$

Question Number 55331    Answers: 0   Comments: 0

  Pg 1539      Pg 1540      Pg 1541      Pg 1542      Pg 1543      Pg 1544      Pg 1545      Pg 1546      Pg 1547      Pg 1548   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com