prove that
(1+x)^n = 1+nx +((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...n(n−n)
using a suitable expansion method
hence determine the expansion of
(2.001)^(89)
let f(x) =∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dx with x from R and x≠0
1) find a explicit form of f(x)
2) extract A =Re(f(x)) and B =Im(f(x)) and find its values .
3) calculate ∫_0 ^∞ ((cos(2t))/((2t^2 +i)^2 ))dt
4) let U_n =∫_0 ^∞ ((cos(nt))/((nt^2 +i)^2 ))dt .calculate lim_(n→+∞) u_n
and study the convergence of Σu_n