Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1539

Question Number 56749    Answers: 1   Comments: 0

The curve y=ax^2 +bx+c crosses the y−axis at the point (0,3) and has stationary point at (1,2). Find the values of a,b and c.

$$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\:\mathrm{crosses}\:\mathrm{the} \\ $$$$\mathrm{y}−\mathrm{axis}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{3}\right)\:\mathrm{and}\:\mathrm{has} \\ $$$$\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\left(\mathrm{1},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}. \\ $$

Question Number 56747    Answers: 1   Comments: 0

∫ x^(2 ) e^x^2 dx

$$\int\:\mathrm{x}^{\mathrm{2}\:} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\:\mathrm{dx} \\ $$

Question Number 56744    Answers: 1   Comments: 0

If R be a relation on a set of real number defined by R={(x,y): x^2 +y^2 =0}, find i− R in roster form ii−Domain of R iii−Range of R

$$\mathrm{If}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{relation}\:\mathrm{on}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\mathrm{R}=\left\{\left(\mathrm{x},\mathrm{y}\right):\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{0}\right\}, \\ $$$$\mathrm{find}\: \\ $$$$\:\:\mathrm{i}−\:\mathrm{R}\:\mathrm{in}\:\mathrm{roster}\:\mathrm{form} \\ $$$$\:\:\mathrm{ii}−\mathrm{Domain}\:\mathrm{of}\:\mathrm{R} \\ $$$$\:\:\mathrm{iii}−\mathrm{Range}\:\mathrm{of}\:\mathrm{R}\: \\ $$

Question Number 56743    Answers: 1   Comments: 0

Question Number 56738    Answers: 1   Comments: 0

The tangent to the curve y=x^3 +bx, where b is constant, at x=1 passes through the points A(−1,6) and (2,−15). Find the value of b.

$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{bx},\:\mathrm{where} \\ $$$$\mathrm{b}\:\mathrm{is}\:\mathrm{constant},\:\mathrm{at}\:\mathrm{x}=\mathrm{1}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the} \\ $$$$\mathrm{points}\:\mathrm{A}\left(−\mathrm{1},\mathrm{6}\right)\:\mathrm{and}\:\left(\mathrm{2},−\mathrm{15}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{b}. \\ $$

Question Number 56732    Answers: 1   Comments: 1

Question Number 56763    Answers: 1   Comments: 0

(a) Determine the area of the largest rectangle that can be inscribed in the circle x^2 + y^2 = a^2 . (b) Name the rectangle so formed

$$\left(\mathrm{a}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{rectangle}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{a}^{\mathrm{2}} \:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Name}\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{so}\:\mathrm{formed} \\ $$

Question Number 56711    Answers: 1   Comments: 0

Find the shotest distance between the line ((x − 8)/3) = ((y − 2)/4) = ((z + 1)/1) , ((x − 3)/3) = ((y + 4)/5) = ((z −2)/2)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shotest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{line} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{x}\:−\:\mathrm{8}}{\mathrm{3}}\:=\:\frac{\mathrm{y}\:−\:\mathrm{2}}{\mathrm{4}}\:=\:\frac{\mathrm{z}\:+\:\mathrm{1}}{\mathrm{1}}\:,\:\:\:\:\:\:\:\frac{\mathrm{x}\:−\:\mathrm{3}}{\mathrm{3}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{4}}{\mathrm{5}}\:=\:\frac{\mathrm{z}\:−\mathrm{2}}{\mathrm{2}} \\ $$

Question Number 56708    Answers: 0   Comments: 1

for all n ∈ N, f_n (x)=Σ_(k=1) ^n (−1)^n x^n for any −1<x<1. If f : (−1,1)→R with f =lim_(n→∞) f_(n ) of (−1,1) ∫_0 ^(1/2) f(x) dx=...

$$\mathrm{for}\:\mathrm{all}\:{n}\:\in\:\mathbb{N},\:{f}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \\ $$$$\mathrm{for}\:\mathrm{any}\:−\mathrm{1}<{x}<\mathrm{1}.\:\mathrm{If}\:{f}\::\:\left(−\mathrm{1},\mathrm{1}\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{with}\:{f}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{f}_{{n}\:} \mathrm{of}\:\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {f}\left({x}\right)\:{dx}=... \\ $$$$ \\ $$

Question Number 56707    Answers: 1   Comments: 0

f(x)=4x^2 +1 for all x ∈ R x_n =Σ_(k=1) ^n (1/(k^2 +3k+6)) for all n ∈N lim_(n→∞) f(x_n )=...

$${f}\left({x}\right)=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\:\:\mathrm{for}\:\mathrm{all}\:{x}\:\in\:\mathbb{R} \\ $$$${x}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{6}}\:\mathrm{for}\:\mathrm{all}\:{n}\:\in\mathbb{N} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}_{{n}} \right)=... \\ $$

Question Number 56706    Answers: 0   Comments: 1

f : [0, 1) → R lim_(x→0) f(x)=0 lim_(x→0) ((f(x)−f((x/2)))/x)=0 lim_(x→0) ((f(x))/x) =...

$${f}\::\:\left[\mathrm{0},\:\mathrm{1}\right)\:\rightarrow\:\mathbb{R} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)−{f}\left(\frac{{x}}{\mathrm{2}}\right)}{{x}}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)}{{x}}\:=... \\ $$

Question Number 56705    Answers: 1   Comments: 0

the smallest value of S={^3 (√n)−^3 (√m) ∣ n, m ∈N} is...

$$\mathrm{the}\:\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{S}=\left\{\:^{\mathrm{3}} \sqrt{{n}}−^{\mathrm{3}} \sqrt{{m}}\:\mid\:{n},\:{m}\:\in\mathbb{N}\right\}\:\:\mathrm{is}... \\ $$

Question Number 56700    Answers: 1   Comments: 2

find ∫ (√(x−2(√x)+3))dx

$$\:{find}\:\int\:\sqrt{{x}−\mathrm{2}\sqrt{{x}}+\mathrm{3}}{dx} \\ $$

Question Number 56699    Answers: 0   Comments: 2

let f_n (a)=∫_(−∞) ^∞ ((sin(x^n ))/(x^2 +a^2 )) dx with a positif real not 0 and n from N 1) find a explicit form of f(a) 2) calculate g_n (a) =∫_(−∞) ^(+∞) ((sin(x^n ))/((x^2 +a^2 )^2 ))dx 3) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/(x^2 +4)) dx and ∫_(−∞) ^(+∞) ((sin(x^2 ))/(x^2 +9))dx 4) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/((x^2 +4)^2 ))dx .

$${let}\:{f}_{{n}} \left({a}\right)=\int_{−\infty} ^{\infty} \:\:\frac{{sin}\left({x}^{{n}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\:{dx}\:\:\:{with}\:{a}\:{positif}\:{real}\:{not}\:\mathrm{0}\:\:{and}\:{n}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{g}_{{n}} \left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{{n}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{dx}\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{3}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 56698    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ ((sin(x^2 ))/(x^4 +4))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} \:+\mathrm{4}}{dx} \\ $$

Question Number 56697    Answers: 2   Comments: 0

Find the shortest distance between the lines L = (1, 4, 2) + N(1, 3, 2) and r = (−1, 1, −1) + λ(1, 2, −1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:\mathrm{L}\:\:=\:\:\left(\mathrm{1},\:\mathrm{4},\:\mathrm{2}\right)\:+\:\mathrm{N}\left(\mathrm{1},\:\mathrm{3},\:\mathrm{2}\right)\:\:\:\mathrm{and} \\ $$$$\:\:\:\mathrm{r}\:\:=\:\:\left(−\mathrm{1},\:\mathrm{1},\:−\mathrm{1}\right)\:+\:\lambda\left(\mathrm{1},\:\mathrm{2},\:−\mathrm{1}\right) \\ $$

Question Number 56696    Answers: 0   Comments: 2

Find the perpendicular distance from (1, 7, 1) to 3x − 2y + 2z = 6

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{distance}\:\mathrm{from}\:\:\left(\mathrm{1},\:\mathrm{7},\:\mathrm{1}\right)\:\:\mathrm{to}\:\:\mathrm{3x}\:−\:\mathrm{2y}\:+\:\mathrm{2z}\:\:=\:\:\mathrm{6} \\ $$

Question Number 56719    Answers: 1   Comments: 6

The possible value of x that satisfy : x^2 + ⌊x^2 − 2x⌋ + ⌈x^2 + 2x + 1⌉ = 2017 , x ∈ R^+ and ⌊x^2 ⌋ − ⌈2x⌉ = ...

$${The}\:\:{possible}\:\:{value}\:\:{of}\:\:{x}\:\:{that}\:\:{satisfy}\:\:: \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\lfloor{x}^{\mathrm{2}} \:−\:\mathrm{2}{x}\rfloor\:+\:\lceil{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{1}\rceil\:\:=\:\:\mathrm{2017}\:\:,\:\:{x}\:\in\:\:\mathbb{R}^{+} \\ $$$${and}\:\:\:\lfloor{x}^{\mathrm{2}} \rfloor\:−\:\lceil\mathrm{2}{x}\rceil\:\:=\:\:... \\ $$

Question Number 56694    Answers: 1   Comments: 0

A tv set was marked for sale at 760.00 cedis in order to make a profit of 20%. The tv was actually sold at a discount of 5%. Calculate to 2 s.f the actual percentage profit

$$\mathrm{A}\:\mathrm{tv}\:\mathrm{set}\:\mathrm{was}\:\mathrm{marked}\:\mathrm{for}\:\mathrm{sale}\:\mathrm{at}\:\mathrm{760}.\mathrm{00} \\ $$$$\mathrm{cedis}\:\mathrm{in}\:\mathrm{order}\:\mathrm{to}\:\mathrm{make}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\mathrm{20\%}. \\ $$$$\mathrm{The}\:\mathrm{tv}\:\mathrm{was}\:\mathrm{actually}\:\mathrm{sold}\:\mathrm{at}\:\mathrm{a}\:\mathrm{discount}\: \\ $$$$\mathrm{of}\:\mathrm{5\%}.\:\mathrm{Calculate}\:\mathrm{to}\:\mathrm{2}\:\mathrm{s}.\mathrm{f}\:\mathrm{the}\:\mathrm{actual}\: \\ $$$$\mathrm{percentage}\:\mathrm{profit} \\ $$

Question Number 56688    Answers: 1   Comments: 0

How many odd numbers, greater than 60000, can be made from the digits 5,6,7,8,9,0, if no number contains any digit more than ones?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{odd}\:\mathrm{numbers},\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{60000},\:\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digits} \\ $$$$\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{0},\:\mathrm{if}\:\mathrm{no}\:\mathrm{number}\:\mathrm{contains}\:\mathrm{any} \\ $$$$\mathrm{digit}\:\mathrm{more}\:\mathrm{than}\:\mathrm{ones}? \\ $$

Question Number 56685    Answers: 1   Comments: 1

show that α^4 +β^4 = (α^2 +β^2 )^2 −2α^2 β^2

$$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} \:=\:\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \\ $$

Question Number 56681    Answers: 2   Comments: 1

Prove that sin ∣x∣ ≤ ∣x∣ ≤ tan ∣x∣ for ∣x∣ < (π/2)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sin}\:\mid{x}\mid\:\leqslant\:\mid{x}\mid\:\leqslant\:\mathrm{tan}\:\mid{x}\mid\:\:\:\:\mathrm{for}\:\:\:\:\mid{x}\mid\:<\:\frac{\pi}{\mathrm{2}} \\ $$

Question Number 56678    Answers: 1   Comments: 0

A box contains 9 whites, 7 red and 4 blue balls. Three balls are picked at random, one after the other without replacement. a) find the probability that: i. they are all of the same color ii. there is one of each colour iii. two of them are red b) if it is known that the first one picked is blue, find the probability that the rest are white.

$$\mathrm{A}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{9}\:\mathrm{whites},\:\mathrm{7}\:\mathrm{red}\:\mathrm{and}\:\mathrm{4}\:\mathrm{blue} \\ $$$$\mathrm{balls}.\:\mathrm{Three}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}, \\ $$$$\mathrm{one}\:\mathrm{after}\:\mathrm{the}\:\mathrm{other}\:\mathrm{without}\:\mathrm{replacement}. \\ $$$$\left.\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}: \\ $$$$\mathrm{i}.\:\mathrm{they}\:\mathrm{are}\:\mathrm{all}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{color} \\ $$$$\mathrm{ii}.\:\mathrm{there}\:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{each}\:\mathrm{colour} \\ $$$$\mathrm{iii}.\:\mathrm{two}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are}\:\mathrm{red} \\ $$$$\left.\mathrm{b}\right)\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\mathrm{the}\:\mathrm{first}\:\mathrm{one}\:\mathrm{picked} \\ $$$$\mathrm{is}\:\mathrm{blue},\:\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{rest} \\ $$$$\mathrm{are}\:\mathrm{white}. \\ $$

Question Number 56668    Answers: 0   Comments: 0

I congratulate Nowruz celebration to all member of this forum

$${I}\:{congratulate}\:{Nowruz}\:{celebration} \\ $$$${to}\:{all}\:{member}\:{of}\:{this}\:{forum} \\ $$

Question Number 56664    Answers: 0   Comments: 2

Question Number 56663    Answers: 0   Comments: 0

i think everybody are in deep thought...

$${i}\:{think}\:{everybody}\:{are}\:{in}\:{deep}\:{thought}... \\ $$

  Pg 1534      Pg 1535      Pg 1536      Pg 1537      Pg 1538      Pg 1539      Pg 1540      Pg 1541      Pg 1542      Pg 1543   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com