Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1539
Question Number 55933 Answers: 2 Comments: 1
Question Number 55930 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\:\:\pi} \frac{{x}\mathrm{tan}\:{x}}{\mathrm{sec}\:{x}+\mathrm{tan}\:{x}}{dx}\:=\:\left({is}\:{it}\:\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\pi\right)? \\ $$
Question Number 55926 Answers: 1 Comments: 0
$$\mathrm{Ancient}\:\mathrm{Roman}\:\mathrm{Number}\:\mathrm{Magic}: \\ $$$$\mathrm{take}\:\mathrm{5}\:\mathrm{matches}\:\mathrm{or}\:\mathrm{picks}\:\mathrm{and}\:\mathrm{form}\:\mathrm{a}\:\mathrm{roman}\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{−} {\overline {\mid\mid\mid}} \\ $$$$\mathrm{now}\:\mathrm{subtract}\:\mathrm{2}\:\mathrm{so}\:\mathrm{that}\:\mathrm{a}\:\mathrm{little}\:\mathrm{more}\:\mathrm{than}\:\mathrm{3}\:\mathrm{is}\:\mathrm{left} \\ $$
Question Number 55920 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{Calculate}}. \\ $$$$\underset{\boldsymbol{{a}}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\boldsymbol{{b}}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\boldsymbol{{c}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{{ab}}\left(\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}\right)}{\mathrm{4}^{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}} \left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{c}}+\boldsymbol{{a}}\right)}. \\ $$
Question Number 55918 Answers: 1 Comments: 0
$${Two}\:{similar}\:{spheres}\:{of}\:{the}\:{same}\:{material}\:{have}\:{masses}\:{of}\:\mathrm{12}{kg}\:{and}\mathrm{250}{kg}\:{respectively}.\:{find}\:{the}\:{radius}\:{of}\:{the}\:{smaller}\:{sphere}\:{if}\:{the}\:{radius}\:{of}\:{the}\:{bigger}\:{shere}\:{is}\:\mathrm{12}.\mathrm{5}{cm} \\ $$
Question Number 55914 Answers: 1 Comments: 0
Question Number 55913 Answers: 1 Comments: 0
Question Number 55909 Answers: 0 Comments: 0
$$\mathrm{If}\:{E}=\left\{{f}\:\mid{f}\::\:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{continoues}\:\mathrm{function}\right. \\ $$$$\left.{f}\left({x}\right)\:\in\mathrm{Q},\:\forall{x}\:\in\mathbb{R}\right\}\:\mathrm{then}\:{E}=... \\ $$
Question Number 55908 Answers: 1 Comments: 0
$$\mathrm{known}\:{a}\:<\:\frac{\pi}{\mathrm{2}}\:. \\ $$$$\mathrm{If}\:\:\mathrm{M}<\mathrm{1}\:\mathrm{with}\:\mid\mathrm{cos}\:{x}−\mathrm{cos}\:{y}\mid\leqslant\mathrm{M}\:\mid{x}−{y}\mid \\ $$$$\mathrm{for}\:\mathrm{every}\:{x},\:{y}\:\in\:\left[\mathrm{0},{a}\right],\:\mathrm{then}\:\mathrm{M}=.. \\ $$
Question Number 55907 Answers: 1 Comments: 1
$$\mathrm{for}\:\mathrm{every}\:{n}\:\in\:\mathbb{N}\:,\:{f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} , \\ $$$$\mathrm{for}\:\mathrm{every}\:{x},\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{and}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right)\:{dx}. \\ $$$$\mathrm{If}\:\mathrm{S}_{\mathrm{n}} =\mathrm{sin}\:\left(\pi{a}_{{n}} \right),\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{n}\in\:\mathbb{N},\:\mathrm{then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{s}_{\mathrm{n}} =... \\ $$
Question Number 55906 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\overset{{n}} {\underset{{k}=\mathrm{1}} {\sum}}\frac{\mathrm{8}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} +\mathrm{1}}=.. \\ $$
Question Number 55905 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}+\mathrm{1}} \right)=\mathrm{315} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}−\mathrm{1}} \right)=\mathrm{2016} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}_{\mathrm{2}{n}} }{{x}_{\mathrm{2}{n}+\mathrm{1}} }=... \\ $$
Question Number 55904 Answers: 2 Comments: 0
$$\mathrm{Let}\:{a}_{{i}} >\mathrm{0},\:\forall_{{i}} =\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\ldots\mathrm{2016} \\ $$$$\mathrm{If}\:\left({a}_{\mathrm{1}} {a}_{\mathrm{2}} \ldots{a}_{\mathrm{2016}} \right)^{\frac{\mathrm{1}}{\mathrm{2016}}} =\mathrm{2} \\ $$$$\mathrm{then} \\ $$$$\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)\ldots\left(\mathrm{1}+{a}_{\mathrm{2016}} \right)\geqslant... \\ $$
Question Number 55902 Answers: 1 Comments: 0
Question Number 55893 Answers: 1 Comments: 0
$$\mathrm{Three}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}\:\mathrm{such}\:\mathrm{that}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{square}\:\mathrm{is}\:\:\boldsymbol{\mathrm{q}}.\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{G}.\mathrm{P} \\ $$
Question Number 55889 Answers: 1 Comments: 0
$$\:\:\:\:\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{bc}}+\boldsymbol{\mathrm{c}}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{ac}}+\boldsymbol{\mathrm{c}}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{c}}=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{ab}}+\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\:\boldsymbol{\mathrm{a}},\:\:\boldsymbol{\mathrm{b}},\:\:\boldsymbol{\mathrm{c}}. \\ $$
Question Number 55877 Answers: 0 Comments: 0
Question Number 55873 Answers: 2 Comments: 1
$${Integrate}..\int\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{{x}}}}\:{dx} \\ $$
Question Number 55869 Answers: 2 Comments: 2
$${if}\:\boldsymbol{{a}}_{\boldsymbol{{n}}+\mathrm{2}} =\frac{\boldsymbol{{a}}_{\boldsymbol{{n}}+\mathrm{1}} ^{\mathrm{3}} }{\boldsymbol{{a}}_{\boldsymbol{{n}}} ^{\mathrm{2}} }\:{and}\:{a}_{\mathrm{1}} =\mathrm{2},\:{a}_{\mathrm{2}} =\mathrm{4} \\ $$$${find}\:\boldsymbol{{a}}_{\boldsymbol{{n}}} =? \\ $$
Question Number 55888 Answers: 1 Comments: 0
$$\:\:\:\boldsymbol{\mathrm{a}}=\mathrm{1}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{b}}=\mathrm{1}+\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{c}}^{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{c}}=\boldsymbol{\mathrm{ab}}+\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\:\boldsymbol{\mathrm{a}},\:\:\boldsymbol{\mathrm{b}},\:\:\boldsymbol{\mathrm{c}}. \\ $$
Question Number 55887 Answers: 2 Comments: 0
$$\:\:\:{a}^{\mathrm{2}} +\mathrm{1}={b}^{\mathrm{2}} \\ $$$$\:\:\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={b}^{\mathrm{4}} \\ $$$$\:\:\:{ab}={c} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}}. \\ $$
Question Number 55860 Answers: 2 Comments: 0
Question Number 55859 Answers: 1 Comments: 0
Question Number 55858 Answers: 0 Comments: 0
Question Number 55857 Answers: 0 Comments: 0
$$\mathrm{Let}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{matrices}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2017}×\mathrm{2017}} \:\mathrm{such}\:\mathrm{that}\: \\ $$$${A}^{−\mathrm{1}} \:=\:\left({A}\:+\:{B}\right)^{−\mathrm{1}} \:−\:{B}^{−\mathrm{1}} \\ $$$$\mathrm{and}\: \\ $$$$\mathrm{det}\left({A}^{−\mathrm{1}} \right)\:=\:\mathrm{2017} \\ $$$$\mathrm{Find}\:\:\mathrm{det}\left({B}\right) \\ $$
Question Number 55856 Answers: 1 Comments: 1
$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}} \:\mathrm{ln}\:{x}\:{dx} \\ $$$$\mathrm{converge}? \\ $$
Pg 1534 Pg 1535 Pg 1536 Pg 1537 Pg 1538 Pg 1539 Pg 1540 Pg 1541 Pg 1542 Pg 1543
Terms of Service
Privacy Policy
Contact: info@tinkutara.com