Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1533
Question Number 57225 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{1}\right){and}\:{f}\left(\mathrm{2}\right) \\ $$
Question Number 57222 Answers: 1 Comments: 0
$$\mathrm{Express}\:\:\:\mathrm{5}.\mathrm{27}\:\:\mathrm{in}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{series}\:\mathrm{and}\:\mathrm{show}\:\mathrm{that}\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\:\:\mathrm{5}\:\frac{\mathrm{5}}{\mathrm{18}} \\ $$
Question Number 57241 Answers: 1 Comments: 0
$$\int\frac{×\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$
Question Number 57212 Answers: 1 Comments: 0
Question Number 57194 Answers: 0 Comments: 1
$${let}\:\:{A}_{{n}} =\int_{{n}} ^{{n}} \:\frac{\left[\sqrt{{x}+\mathrm{1}}\right]−\left[\sqrt{{x}}\right]}{{x}}\:{dx}\:\:\:{with}\:{n}\:{natural}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{A}_{{n}} \\ $$
Question Number 57186 Answers: 1 Comments: 3
Question Number 57184 Answers: 2 Comments: 1
Question Number 57237 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{sin}\left({xt}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} \:{cos}\left({xt}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt}\:\:{and}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} \:{cos}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:{dt}\:. \\ $$
Question Number 57236 Answers: 1 Comments: 1
$${clalculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \left(\mathrm{1}−{t}\right)^{{n}} {dt}\:\:\:{with}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 57235 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cosx}\:−{sinx}}{\sqrt{{cos}^{\mathrm{8}} {x}\:+{sin}^{\mathrm{8}} {x}}}\:{dx} \\ $$
Question Number 57234 Answers: 0 Comments: 0
$${let}\:{tbe}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}} −\mathrm{1}}\:\:{with}\:{n}\:{from}\:{n}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{poles}\:{of}\:{F}\:{and}\:{decompose}\:{it}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){decompose}\:{F}\left({x}\right){inside}\:{R}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{2}} ^{\mathrm{3}} {F}\left({x}\right){dx}\:. \\ $$
Question Number 57233 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{x}^{\mathrm{4}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 57232 Answers: 0 Comments: 1
$${decompose}\:{tbe}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{1}\right)}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$
Question Number 57231 Answers: 0 Comments: 1
$${find}\:{tbe}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}\:+\mathrm{2}\right)^{\mathrm{2}} }\:{dx} \\ $$
Question Number 57230 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$
Question Number 57229 Answers: 1 Comments: 1
$${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{3}} \:+\mathrm{1}}\:{dx}\:{at}\:{form}\:{of}\:{serie} \\ $$
Question Number 57198 Answers: 0 Comments: 2
Question Number 57175 Answers: 0 Comments: 5
Question Number 57174 Answers: 1 Comments: 0
Question Number 57173 Answers: 0 Comments: 0
Question Number 57164 Answers: 1 Comments: 0
$$\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\boldsymbol{\mathrm{x}}^{\mathrm{5}} −.....=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\boldsymbol{\mathrm{solved}}\:\:\boldsymbol{\mathrm{equation}}. \\ $$$$\mid\boldsymbol{\mathrm{x}}\mid<\mathrm{1} \\ $$
Question Number 57163 Answers: 0 Comments: 0
Question Number 57140 Answers: 1 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}\:{dx}\:\leqslant\:\frac{\mathrm{15}}{\mathrm{8}} \\ $$
Question Number 57138 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:\mathrm{cos}\:{x}+\mathrm{1}}\:{dx}\:\:\left({a}\:>\mathrm{1}\right)\:\:\mathrm{is} \\ $$
Question Number 57136 Answers: 1 Comments: 0
$$\underset{{a}} {\overset{{b}} {\int}}\:\:\frac{{f}\left({x}\right)}{{f}\left({x}\right)+{f}\left({a}+{b}−{x}\right)}\:{dx}\:= \\ $$
Question Number 57127 Answers: 0 Comments: 24
$$\left\{\boldsymbol{\mathrm{cos}}\mathrm{1}°\right\}+\left\{\boldsymbol{\mathrm{cos}}\mathrm{2}°\right\}+\left\{\boldsymbol{\mathrm{cos}}\mathrm{3}°\right\}+....+\left\{\boldsymbol{\mathrm{cos}}\mathrm{270}\right\}=? \\ $$
Pg 1528 Pg 1529 Pg 1530 Pg 1531 Pg 1532 Pg 1533 Pg 1534 Pg 1535 Pg 1536 Pg 1537
Terms of Service
Privacy Policy
Contact: info@tinkutara.com