Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1533

Question Number 50770    Answers: 0   Comments: 1

Question Number 50764    Answers: 0   Comments: 2

Question Number 50762    Answers: 1   Comments: 1

Question Number 50755    Answers: 1   Comments: 1

Question Number 50747    Answers: 1   Comments: 2

x^2 −y^2 =a,a≠0 y^2 −z^2 =b,b≠0 z^2 −x^2 =c,c≠0 solve for :x,y,z.

$$\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{a}},{a}\neq\mathrm{0} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{b}},{b}\neq\mathrm{0} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{c}},{c}\neq\mathrm{0} \\ $$$${solve}\:{for}\::{x},{y},{z}.\:\: \\ $$

Question Number 50744    Answers: 1   Comments: 0

If the perimeter of a rectangle is a 2−digit number which unit digitL and tens digit represents its length and breadth respectively.Find its area in constant.

$${If}\:{the}\:{perimeter}\:{of}\:{a}\:{rectangle}\:{is} \\ $$$${a}\:\mathrm{2}−{digit}\:{number}\:{which}\:{unit}\:{digit}\mathscr{L} \\ $$$${and}\:{tens}\:{digit}\:{represents}\:{its}\:{length} \\ $$$${and}\:{breadth}\:{respectively}.{Find}\:{its} \\ $$$${area}\:{in}\:{constant}. \\ $$

Question Number 50732    Answers: 3   Comments: 0

Question Number 50730    Answers: 1   Comments: 0

(√(x−a))+(√(x−b))+(√(x−c))+x = d solve for x.

$$\sqrt{{x}−{a}}+\sqrt{{x}−{b}}+\sqrt{{x}−{c}}+{x}\:=\:{d} \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 50724    Answers: 1   Comments: 0

a man goes in for an examination in which there are 4 papers which maxmum of 10 marks for each paper the no of ways of getting 20 marks on the whole is ans:891

$$\mathrm{a}\:\mathrm{man}\:\mathrm{goes}\:\mathrm{in}\:\mathrm{for}\:\mathrm{an}\:\mathrm{examination}\:\mathrm{in} \\ $$$$\mathrm{which}\:\mathrm{there}\:\mathrm{are}\:\mathrm{4}\:\mathrm{papers}\:\mathrm{which}\:\mathrm{maxmum} \\ $$$$\mathrm{of}\:\mathrm{10}\:\mathrm{marks}\:\mathrm{for}\:\mathrm{each}\:\mathrm{paper}\:\mathrm{the}\:\mathrm{no}\:\mathrm{of}\:\mathrm{ways} \\ $$$$\mathrm{of}\:\mathrm{getting}\:\mathrm{20}\:\mathrm{marks}\:\mathrm{on}\:\mathrm{the}\:\mathrm{whole}\:\mathrm{is} \\ $$$$\mathrm{ans}:\mathrm{891} \\ $$

Question Number 50738    Answers: 0   Comments: 0

Question Number 50717    Answers: 2   Comments: 0

Question Number 50754    Answers: 3   Comments: 0

Question Number 50752    Answers: 0   Comments: 0

Question Number 50710    Answers: 2   Comments: 0

If x + y + z = 15 and xy + yz + zx = 85, find x^2 + y^2 + z^2

$$\mathrm{If}\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{15}\:\:\mathrm{and}\:\:\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}\:\:=\:\mathrm{85},\:\:\:\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \\ $$

Question Number 50705    Answers: 1   Comments: 0

If cos 2y = tan^2 x, prove that cos2x=tan^2 y.

$$\mathrm{If}\:\mathrm{cos}\:\mathrm{2y}\:=\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{cos2x}=\mathrm{tan}\:^{\mathrm{2}} \mathrm{y}. \\ $$

Question Number 50701    Answers: 0   Comments: 0

how do we find the vertices and co vertices of an ellipse with the centre not at the origin ?

$${how}\:{do}\:{we}\:{find}\:{the}\:{vertices}\:{and}\:{co}\:{vertices}\:{of}\:{an}\:{ellipse}\:{with}\:{the}\:{centre}\:{not}\:{at}\:{the}\:{origin}\:? \\ $$

Question Number 50702    Answers: 0   Comments: 1

write the fourier series of f(x)=x 0≤x≤2

$${write}\:{the}\:{fourier}\:{series}\:{of}\: \\ $$$${f}\left({x}\right)={x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2} \\ $$

Question Number 50698    Answers: 1   Comments: 0

Solve for x 4^(2x+1) ×5^(x−2) = 6^(1−x)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$ \\ $$$$\mathrm{4}^{\mathrm{2x}+\mathrm{1}} ×\mathrm{5}^{\mathrm{x}−\mathrm{2}} =\:\mathrm{6}^{\mathrm{1}−\mathrm{x}} \\ $$

Question Number 50689    Answers: 1   Comments: 0

If c is the line segement from (0, 0, 0) to (1, 2, 3) find ∫ x e^(yz) ds

$$\mathrm{If}\:\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{line}\:\mathrm{segement}\:\mathrm{from}\:\:\left(\mathrm{0},\:\mathrm{0},\:\mathrm{0}\right)\:\mathrm{to}\:\left(\mathrm{1},\:\mathrm{2},\:\mathrm{3}\right) \\ $$$$\mathrm{find}\:\:\:\int\:\mathrm{x}\:\mathrm{e}^{\mathrm{yz}} \:\:\mathrm{ds} \\ $$

Question Number 50685    Answers: 1   Comments: 0

if : 3x+1=7 x=?

$$\boldsymbol{\mathrm{if}}\::\:\mathrm{3}\boldsymbol{\mathrm{x}}+\mathrm{1}=\mathrm{7} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 50684    Answers: 1   Comments: 0

Question Number 50683    Answers: 0   Comments: 1

find f(λ) =∫_0 ^∞ ((arctan(λx))/(1+λx^2 ))dx with λ>0

$${find}\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\lambda{x}\right)}{\mathrm{1}+\lambda{x}^{\mathrm{2}} }{dx}\:\:{with}\:\lambda>\mathrm{0} \\ $$

Question Number 50676    Answers: 0   Comments: 3

Question Number 50674    Answers: 2   Comments: 3

Find the maximum area of a triangle inscribed in an ellipse with parameters a and b.

$${Find}\:{the}\:{maximum}\:{area}\:{of}\:{a}\:{triangle} \\ $$$${inscribed}\:{in}\:{an}\:{ellipse}\:{with}\:{parameters} \\ $$$${a}\:{and}\:{b}. \\ $$

Question Number 50659    Answers: 2   Comments: 4

∫_(0 ) ^( ∞) (dx/(4−x^2 )) = ?

$$\int_{\mathrm{0}\:} ^{\:\infty} \:\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 50640    Answers: 1   Comments: 2

  Pg 1528      Pg 1529      Pg 1530      Pg 1531      Pg 1532      Pg 1533      Pg 1534      Pg 1535      Pg 1536      Pg 1537   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com