Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1533

Question Number 55858    Answers: 0   Comments: 0

Question Number 55857    Answers: 0   Comments: 0

Let A and B are matrices in R^(2017×2017) such that A^(−1) = (A + B)^(−1) − B^(−1) and det(A^(−1) ) = 2017 Find det(B)

$$\mathrm{Let}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{matrices}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2017}×\mathrm{2017}} \:\mathrm{such}\:\mathrm{that}\: \\ $$$${A}^{−\mathrm{1}} \:=\:\left({A}\:+\:{B}\right)^{−\mathrm{1}} \:−\:{B}^{−\mathrm{1}} \\ $$$$\mathrm{and}\: \\ $$$$\mathrm{det}\left({A}^{−\mathrm{1}} \right)\:=\:\mathrm{2017} \\ $$$$\mathrm{Find}\:\:\mathrm{det}\left({B}\right) \\ $$

Question Number 55856    Answers: 1   Comments: 1

For what values of p the integral ∫_0 ^1 x^p ln x dx converge?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}} \:\mathrm{ln}\:{x}\:{dx} \\ $$$$\mathrm{converge}? \\ $$

Question Number 55855    Answers: 0   Comments: 1

How to integrate ∫_0 ^1 ((sec^2 x)/(x(√x))) dx ?

$$\mathrm{How}\:\mathrm{to}\:\mathrm{integrate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{sec}^{\mathrm{2}} \:{x}}{{x}\sqrt{{x}}}\:{dx}\:\:? \\ $$

Question Number 55853    Answers: 0   Comments: 0

Question Number 55846    Answers: 1   Comments: 0

If x, y, z are in AP. Then the value of the determinant determinant (((a+2),(a+3),(a+2x)),((a+3),(a+4),(a+2y)),((a+4),(a+5),(a+2z))) is

$$\mathrm{If}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{determinant} \\ $$$$\begin{vmatrix}{{a}+\mathrm{2}}&{{a}+\mathrm{3}}&{{a}+\mathrm{2}{x}}\\{{a}+\mathrm{3}}&{{a}+\mathrm{4}}&{{a}+\mathrm{2}{y}}\\{{a}+\mathrm{4}}&{{a}+\mathrm{5}}&{{a}+\mathrm{2}{z}}\end{vmatrix}\:\mathrm{is} \\ $$

Question Number 55845    Answers: 0   Comments: 0

If A is 3×4 matrix and B is a matrix such that A′B and BA′ are both defined. Then B is of the type

$$\mathrm{If}\:{A}\:\mathrm{is}\:\mathrm{3}×\mathrm{4}\:\mathrm{matrix}\:\mathrm{and}\:{B}\:\mathrm{is}\:\mathrm{a}\:\mathrm{matrix}\:\mathrm{such} \\ $$$$\mathrm{that}\:{A}'{B}\:\mathrm{and}\:{BA}'\:\mathrm{are}\:\mathrm{both}\:\mathrm{defined}.\:\mathrm{Then} \\ $$$${B}\:\:\:\mathrm{is}\:\mathrm{of}\:\mathrm{the}\:\mathrm{type} \\ $$

Question Number 55844    Answers: 1   Comments: 0

If A is an involutory matrix, then (I+A)(I−A)=0.

$$\mathrm{If}\:{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{involutory}\:\mathrm{matrix},\:\mathrm{then}\: \\ $$$$\left({I}+{A}\right)\left({I}−{A}\right)=\mathrm{0}. \\ $$

Question Number 55843    Answers: 1   Comments: 1

Consider the system of equations a_1 x+b_1 y+c_1 z=0, a_2 x+b_2 y+c_2 z=0 , a_3 x+b_3 y+c_3 z=0 if determinant ((a_1 ,b_1 ,c_1 ),(a_2 ,b_2 ,c_2 ),(a_3 ,b_3 ,c_3 )) = 0, then the system has

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}=\mathrm{0},\:{a}_{\mathrm{2}} {x}+{b}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} {z}=\mathrm{0}\:, \\ $$$${a}_{\mathrm{3}} {x}+{b}_{\mathrm{3}} {y}+{c}_{\mathrm{3}} {z}=\mathrm{0}\:\:\mathrm{if} \\ $$$$\begin{vmatrix}{{a}_{\mathrm{1}} }&{{b}_{\mathrm{1}} }&{{c}_{\mathrm{1}} }\\{{a}_{\mathrm{2}} }&{{b}_{\mathrm{2}} }&{{c}_{\mathrm{2}} }\\{{a}_{\mathrm{3}} }&{{b}_{\mathrm{3}} }&{{c}_{\mathrm{3}} }\end{vmatrix}\:=\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{system}\:\mathrm{has} \\ $$

Question Number 55841    Answers: 1   Comments: 0

If A= [(( 4),(x+2)),((2x−3),(x+1)) ] is symmetric, then x=

$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\:\:\mathrm{4}}&{{x}+\mathrm{2}}\\{\mathrm{2}{x}−\mathrm{3}}&{{x}+\mathrm{1}}\end{bmatrix}\:\mathrm{is}\:\mathrm{symmetric},\:\mathrm{then}\:{x}= \\ $$

Question Number 55834    Answers: 1   Comments: 0

Question Number 55823    Answers: 0   Comments: 0

let f(n,m)= { (1,(n = 1)),((m+1),(n = 2)),((Σ_(i=0) ^m f(n−1,i)),(n > 2)) :} a.compute f(3,4) b.find a function tha satisfies above recursion.

$${let} \\ $$$${f}\left({n},{m}\right)=\begin{cases}{\mathrm{1}}&{{n}\:=\:\mathrm{1}}\\{{m}+\mathrm{1}}&{{n}\:=\:\mathrm{2}}\\{\underset{{i}=\mathrm{0}} {\overset{{m}} {\sum}}{f}\left({n}−\mathrm{1},{i}\right)}&{{n}\:>\:\mathrm{2}}\end{cases} \\ $$$${a}.\mathrm{compute}\:{f}\left(\mathrm{3},\mathrm{4}\right) \\ $$$${b}.\mathrm{find}\:\mathrm{a}\:\mathrm{function}\:\mathrm{tha}\:\mathrm{satisfies}\:\mathrm{above}\:\mathrm{recursion}. \\ $$

Question Number 55820    Answers: 0   Comments: 7

Question Number 55816    Answers: 1   Comments: 0

find grad log ∣r∣

$${find}\:{grad}\:{log}\:\mid\boldsymbol{{r}}\mid \\ $$

Question Number 55815    Answers: 1   Comments: 0

prove that (1+x)^n = 1+nx +((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...n(n−n) using a suitable expansion method hence determine the expansion of (2.001)^(89)

$${prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} =\:\mathrm{1}+{nx}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +...{n}\left({n}−{n}\right) \\ $$$${using}\:{a}\:{suitable}\:{expansion}\:{method} \\ $$$${hence}\:{determine}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{2}.\mathrm{001}\right)^{\mathrm{89}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 55813    Answers: 0   Comments: 0

((0.8)/x)=((96)/(60))⇒x=0.5⇒0.8−0.5=0.3⇒0.4−0.3=0.1

$$\frac{\mathrm{0}.\mathrm{8}}{{x}}=\frac{\mathrm{96}}{\mathrm{60}}\Rightarrow{x}=\mathrm{0}.\mathrm{5}\Rightarrow\mathrm{0}.\mathrm{8}−\mathrm{0}.\mathrm{5}=\mathrm{0}.\mathrm{3}\Rightarrow\mathrm{0}.\mathrm{4}−\mathrm{0}.\mathrm{3}=\mathrm{0}.\mathrm{1} \\ $$

Question Number 55806    Answers: 1   Comments: 0

Solve for x: x^(log_3 2) = (√x) + 1

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\mathrm{x}^{\mathrm{log}_{\mathrm{3}} \mathrm{2}} \:\:=\:\:\sqrt{\mathrm{x}}\:\:+\:\:\mathrm{1} \\ $$

Question Number 55805    Answers: 0   Comments: 1

Question Number 55788    Answers: 1   Comments: 3

The sum of the last eight coefficients in the expansion of (1+x)^(16) is 2^(15) .

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{eight}\:\mathrm{coefficients}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{16}} \:\mathrm{is}\:\mathrm{2}^{\mathrm{15}} \:. \\ $$

Question Number 55787    Answers: 2   Comments: 0

The remainder when 5^(99) is divided by 13 is

$$\mathrm{The}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{5}^{\mathrm{99}} \mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{13}\:\mathrm{is} \\ $$

Question Number 55786    Answers: 1   Comments: 0

If the third term in the expansion of ((1/x) + x^(log_(10) x) )^5 is 1000, then the value of x is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{third}\:\mathrm{term}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\: \\ $$$$\left(\frac{\mathrm{1}}{{x}}\:+\:{x}^{\mathrm{log}_{\mathrm{10}} {x}} \right)^{\mathrm{5}} \:\mathrm{is}\:\mathrm{1000},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${x}\:\mathrm{is} \\ $$

Question Number 55785    Answers: 2   Comments: 1

The coefficient of x^4 in the expansion of (1+x+x^2 +x^3 )^(11) is

$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{4}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)^{\mathrm{11}} \:\mathrm{is} \\ $$

Question Number 55784    Answers: 1   Comments: 0

If n an odd natural number, then Σ_(r=0) ^n (((−1)^r )/(^n C_r )) equals

$$\mathrm{If}\:{n}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{natural}\:\mathrm{number},\:\mathrm{then} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{r}} }{\:^{{n}} {C}_{{r}} \:}\:\mathrm{equals} \\ $$

Question Number 55780    Answers: 1   Comments: 1

∫ (1/(√(x^2 +2x+1))) dx= A log ∣x+1∣+C for x>−1, then A=_____.

$$\int\:\frac{\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}}\:{dx}=\:{A}\:\mathrm{log}\:\mid{x}+\mathrm{1}\mid+{C}\:\mathrm{for} \\ $$$${x}>−\mathrm{1},\:\mathrm{then}\:{A}=\_\_\_\_\_. \\ $$

Question Number 55779    Answers: 1   Comments: 2

If ∫ x log (1+(1/x))dx = f(x) ∙ log (x+1)+g(x) ∙ x^2 +Ax+C, then

$$\mathrm{If}\:\int\:{x}\:\mathrm{log}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right){dx}\: \\ $$$$\:\:\:\:\:\:=\:{f}\left({x}\right)\:\centerdot\:\mathrm{log}\:\left({x}+\mathrm{1}\right)+{g}\left({x}\right)\:\centerdot\:{x}^{\mathrm{2}} +{Ax}+{C}, \\ $$$$\mathrm{then} \\ $$

Question Number 55778    Answers: 1   Comments: 0

∫ ((2x−3)/((x^2 +x+1)^2 )) dx =

$$\int\:\:\frac{\mathrm{2}{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:= \\ $$

  Pg 1528      Pg 1529      Pg 1530      Pg 1531      Pg 1532      Pg 1533      Pg 1534      Pg 1535      Pg 1536      Pg 1537   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com