Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1529

Question Number 58346    Answers: 2   Comments: 0

∫((cos(x))/(cos(2016°+cos(x)))×dx

$$\int\frac{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{cos}}\left(\mathrm{2016}°+\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\right.}×\boldsymbol{\mathrm{dx}} \\ $$

Question Number 58354    Answers: 1   Comments: 0

let U_n =((1^2 +2^2 +3^2 +....+n^2 )/(1^4 +2^4 +3^4 +....+n^4 )) 1)find lim_(n→+∞) U_n 2) calculate Σ_(n=1) ^∞ U_n

$${let}\:{U}_{{n}} =\frac{\mathrm{1}^{\mathrm{2}} \:+\mathrm{2}^{\mathrm{2}} \:+\mathrm{3}^{\mathrm{2}} \:+....+{n}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{4}} \:+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+....+{n}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{U}_{{n}} \\ $$

Question Number 58319    Answers: 1   Comments: 0

∫x^n (lnx)^n dx

$$\int{x}^{{n}} \left(\mathrm{ln}{x}\right)^{{n}} {dx} \\ $$

Question Number 58309    Answers: 2   Comments: 3

Prove that lim_(x→0) ((1−cos(x)cos(x/2)cos(x/3)...)/x^2 )=(π^2 /(12))

$${Prove}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}−{cos}\left({x}\right){cos}\left({x}/\mathrm{2}\right){cos}\left({x}/\mathrm{3}\right)...}{{x}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$

Question Number 58299    Answers: 1   Comments: 1

find ∫ (dx/((x^2 +x+1)^(3/2) ))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 58286    Answers: 0   Comments: 1

A small body with temperature θ and absorbtivity τ is placed in a large evaluated capacity whose interior walls are at a temperature θ_w . when θ_w −θ is small, show that the rate of heat transfer by radiation is Q^• = 4θ_w ^3 Aτδ(θ_w −θ).

$$\mathrm{A}\:\mathrm{small}\:\mathrm{body}\:\mathrm{with}\:\mathrm{temperature}\:\theta\:\mathrm{and} \\ $$$$\mathrm{absorbtivity}\:\tau\:\mathrm{is}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{large}\: \\ $$$$\mathrm{evaluated}\:\mathrm{capacity}\:\mathrm{whose}\:\mathrm{interior}\: \\ $$$$\mathrm{walls}\:\mathrm{are}\:\mathrm{at}\:\mathrm{a}\:\mathrm{temperature}\:\theta_{\mathrm{w}} . \\ $$$$\mathrm{when}\:\:\:\:\theta_{\mathrm{w}} −\theta\:\:\:\:\mathrm{is}\:\:\mathrm{small},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{rate}\:\mathrm{of}\:\mathrm{heat}\:\mathrm{transfer}\:\mathrm{by}\:\mathrm{radiation}\:\mathrm{is} \\ $$$$\:\:\:\:\:\overset{\bullet} {\mathrm{Q}}=\:\mathrm{4}\theta_{\mathrm{w}} ^{\mathrm{3}} \mathrm{A}\tau\delta\left(\theta_{\mathrm{w}} −\theta\right). \\ $$

Question Number 58282    Answers: 1   Comments: 0

A circle tangents to :x and y axes and x^(1/2) +y^(1/2) =a^(1/2) .find its radious.

$$\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{\mathrm{tangents}}\:\boldsymbol{\mathrm{to}}\::\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{axes}}\:\boldsymbol{\mathrm{and}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} +\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\mathrm{2}}} =\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} .\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{radious}}. \\ $$

Question Number 58276    Answers: 0   Comments: 0

Question Number 58267    Answers: 0   Comments: 13

lim_(x→0) [((1−cos (x)cos (2x)cos (3x)cos (4x))/x^2 )]

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\mathrm{1}−\mathrm{cos}\:\left({x}\right)\mathrm{cos}\:\left(\mathrm{2}{x}\right)\mathrm{cos}\:\left(\mathrm{3}{x}\right)\mathrm{cos}\:\left(\mathrm{4}{x}\right)}{{x}^{\mathrm{2}} }\right] \\ $$

Question Number 58259    Answers: 4   Comments: 4

a .∫ (dx/(2sin^2 x+3tg^2 x))=? b .∫(( 1+(x)^(1/3) )/(1+(√x)+(x)^(1/3) +(x)^(1/6) ))dx=? c .∫ ((cosx)/(1+cos2x))dx=? d .∫ ((sin^2 x)/((√2)+(√3).cos^2 x))dx=?

$$\boldsymbol{\mathrm{a}}\:\:.\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}+\mathrm{3}\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}=? \\ $$$$\boldsymbol{\mathrm{b}}\:\:\:.\int\frac{\:\:\mathrm{1}+\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}}{\mathrm{1}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\mathrm{6}}]{\boldsymbol{\mathrm{x}}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{c}}\:\:\:\:\:.\int\:\:\frac{\boldsymbol{\mathrm{cosx}}}{\mathrm{1}+\boldsymbol{\mathrm{cos}}\mathrm{2}\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{d}}\:\:\:\:\:.\int\:\:\:\frac{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}{\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}.\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 58257    Answers: 1   Comments: 1

Question Number 58254    Answers: 1   Comments: 0

The line 3x−2y−5=0 is parallel to a diameter of a circle x^2 +y^2 −4x+2y−4=0. find the equation of the diameter.

$$\mathrm{The}\:\mathrm{line}\:\mathrm{3x}−\mathrm{2y}−\mathrm{5}=\mathrm{0}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{a}\:\mathrm{diameter} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}+\mathrm{2y}−\mathrm{4}=\mathrm{0}.\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diameter}. \\ $$

Question Number 58253    Answers: 1   Comments: 0

There are 100, 150 and 250 students in forms one, two and three, respectively in a school. If the mean ages of tbe students in the forms are 15.6 years, 16.8 years and 18years respectively, find i. the total number of students in the forms ii. correct to one decimal place, the mean age of all the students

$$\mathrm{There}\:\mathrm{are}\:\mathrm{100},\:\mathrm{150}\:\mathrm{and}\:\mathrm{250}\:\mathrm{students}\:\mathrm{in} \\ $$$$\mathrm{forms}\:\mathrm{one},\:\mathrm{two}\:\mathrm{and}\:\mathrm{three},\:\mathrm{respectively} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{school}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{ages}\:\mathrm{of}\:\mathrm{tbe}\:\mathrm{students}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{forms}\:\mathrm{are}\:\mathrm{15}.\mathrm{6}\:\mathrm{years},\:\mathrm{16}.\mathrm{8}\:\mathrm{years}\:\mathrm{and} \\ $$$$\mathrm{18years}\:\mathrm{respectively},\:\mathrm{find} \\ $$$$\mathrm{i}.\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{students}\:\mathrm{in}\:\mathrm{the}\:\mathrm{forms} \\ $$$$\mathrm{ii}.\:\mathrm{correct}\:\mathrm{to}\:\mathrm{one}\:\mathrm{decimal}\:\mathrm{place},\:\mathrm{the}\:\mathrm{mean} \\ $$$$\mathrm{age}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{students} \\ $$

Question Number 58250    Answers: 1   Comments: 0

∫_( 0) ^( 1) (((3x^3 − x^2 + 2x − 4)/(√(x^2 − 3x + 2)))) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\left(\frac{\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{4}}{\sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{2}}}\right)\:\mathrm{dx} \\ $$

Question Number 58249    Answers: 0   Comments: 0

I_n ^ =∫_0 ^(π/2) cos^n xcos(nx)dx then show that I_1 ,I_2 ,I_3 ....are in G.P

$$\overset{} {{I}}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{{n}} {xcos}\left({nx}\right){dx} \\ $$$${then}\:{show}\:{that}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,{I}_{\mathrm{3}} ....{are}\:{in}\:{G}.{P} \\ $$

Question Number 58248    Answers: 1   Comments: 0

leg A_1 ,A_2 ,...A_n and H_1 ,H_2 ,...H_n are n A.M′S and H.M′S respectively between a and b prove that A_r H_(n−r+1) =ab n≥r≥1

$${leg}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} ,...{A}_{{n}} \:{and}\:{H}_{\mathrm{1}} ,{H}_{\mathrm{2}} ,...{H}_{{n}} \:{are}\:{n}\:{A}.{M}'{S}\: \\ $$$${and}\:{H}.{M}'{S}\:{respectively}\:{between}\:{a}\:{and}\:{b} \\ $$$${prove}\:{that}\:{A}_{{r}} {H}_{{n}−{r}+\mathrm{1}} ={ab} \\ $$$$\:{n}\geqslant{r}\geqslant\mathrm{1} \\ $$

Question Number 58247    Answers: 0   Comments: 0

lim_(n→∞) ((S_1 S_n +S_2 S_(n−1) +S_3 S_(n−2) +...+S_n S_1 )/(S_1 ^2 +S_2 ^2 +...+S_n ^2 )) when S_n is sum of infinite series whose first term=n and common ratio (1/(n+1)) find the value of limit

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{S}_{\mathrm{1}} {S}_{{n}} +{S}_{\mathrm{2}} {S}_{{n}−\mathrm{1}} +{S}_{\mathrm{3}} {S}_{{n}−\mathrm{2}} +...+{S}_{{n}} {S}_{\mathrm{1}} }{{S}_{\mathrm{1}} ^{\mathrm{2}} +{S}_{\mathrm{2}} ^{\mathrm{2}} +...+{S}_{{n}} ^{\mathrm{2}} } \\ $$$${when}\:{S}_{{n}} \:{is}\:{sum}\:{of}\:{infinite}\:{series}\:{whose} \\ $$$${first}\:{term}={n}\:\:\:{and}\:{common}\:{ratio}\:\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$${find}\:{the}\:{value}\:{of}\:{limit} \\ $$

Question Number 58246    Answers: 1   Comments: 0

show that P=x^(9999) +x^(8888) +x^(7777) +x^(6666) +x^(5555) +x^(4444) +x^(3333) +x^(2222) +x^(1111) +1 Q=x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1 prove P is divisible by Q

$${show}\:{that} \\ $$$${P}={x}^{\mathrm{9999}} +{x}^{\mathrm{8888}} +{x}^{\mathrm{7777}} +{x}^{\mathrm{6666}} +{x}^{\mathrm{5555}} +{x}^{\mathrm{4444}} +{x}^{\mathrm{3333}} +{x}^{\mathrm{2222}} +{x}^{\mathrm{1111}} +\mathrm{1} \\ $$$${Q}={x}^{\mathrm{9}} +{x}^{\mathrm{8}} +{x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$${prove}\:\:{P}\:\:{is}\:{divisible}\:{by}\:{Q} \\ $$

Question Number 58245    Answers: 1   Comments: 0

if log(a+b+c)=loga+logb+logc prove log(((2a)/(1−a^2 ))+((2b)/(1−b^2 ))+((2c)/(1−c^2 )))=log(((2a)/(1−a^2 )))+log(((2b)/(1−b^2 )))+log(((2c)/(1−c^2 )))

$${if}\:{log}\left({a}+{b}+{c}\right)={loga}+{logb}+{logc} \\ $$$${prove} \\ $$$${log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right)={log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right) \\ $$

Question Number 58240    Answers: 1   Comments: 2

i=∫dx/(ax^2 +bx+c)^(3/2)

$$\mathrm{i}=\int\mathrm{dx}/\left(\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$

Question Number 58239    Answers: 1   Comments: 0

lim_(x→0^+ ) (x^(1/x) )

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left({x}^{\frac{\mathrm{1}}{{x}}} \right) \\ $$

Question Number 58238    Answers: 0   Comments: 0

∫_( 0) ^( 1) (((3x^3 − x^2 + 2x − 4)/(√(x^2 − 3x + 2)))) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\left(\frac{\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:−\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\mathrm{2}\boldsymbol{\mathrm{x}}\:−\:\mathrm{4}}{\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\boldsymbol{\mathrm{x}}\:+\:\mathrm{2}}}\right)\:\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 58222    Answers: 2   Comments: 4

∫_0 ^1 x^x dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} {dx} \\ $$

Question Number 58220    Answers: 1   Comments: 0

find ∫ (dx/((x^2 +x)(√(−x^2 +2x +3))))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}\right)\sqrt{−{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{3}}} \\ $$$$ \\ $$

Question Number 58216    Answers: 1   Comments: 1

The molar heat capacity of a metal at low temperature varies with the temperature according to the equation C = bθ + (a/H)θ^3 where a, b and H are constant. How much heat per mole is transfered during the process in which the temperature change from 0.01H to 0.02H ?

$$\mathrm{The}\:\mathrm{molar}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{metal}\:\:\mathrm{at} \\ $$$$\mathrm{low}\:\mathrm{temperature}\:\mathrm{varies}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\mathrm{temperature}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\mathrm{C}\:=\:\mathrm{b}\theta\:+\:\frac{\mathrm{a}}{\mathrm{H}}\theta^{\mathrm{3}} \\ $$$$\mathrm{where}\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{H}\:\mathrm{are}\:\mathrm{constant}. \\ $$$$\mathrm{How}\:\mathrm{much}\:\mathrm{heat}\:\mathrm{per}\:\mathrm{mole}\:\mathrm{is}\:\mathrm{transfered} \\ $$$$\mathrm{during}\:\mathrm{the}\:\mathrm{process}\:\mathrm{in}\:\mathrm{which}\:\mathrm{the}\: \\ $$$$\mathrm{temperature}\:\mathrm{change}\:\mathrm{from}\:\mathrm{0}.\mathrm{01H}\: \\ $$$$\mathrm{to}\:\mathrm{0}.\mathrm{02H}\:? \\ $$

Question Number 58212    Answers: 0   Comments: 0

let f(x) =∫_0 ^∞ e^(−x[t]) sin(xt)dt with x>0 1) find a explicit form for f(x) 2) let U_n =nf(n) find lim_(n→+∞) U_n and study the convergence of ΣU_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}\left[{t}\right]} \:{sin}\left({xt}\right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{U}_{{n}} ={nf}\left({n}\right)\:\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:\:\:{and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma{U}_{{n}} \\ $$

  Pg 1524      Pg 1525      Pg 1526      Pg 1527      Pg 1528      Pg 1529      Pg 1530      Pg 1531      Pg 1532      Pg 1533   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com