Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1529

Question Number 57023    Answers: 1   Comments: 0

There are 28 players in a national football team. 14 play midfield and defence, 15 play defence and attack and 3 play midfield only. the number of players who play attack only is twice those who play defence only, and the number who play defence is equal to those who play attack. If 18 play midfield represent the information on a venn diagram. Find i. how many play at most two games ii. how many play neither attack nor defence iii. how many play either midfield or attack.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{28}\:\mathrm{players}\:\mathrm{in}\:\mathrm{a}\:\mathrm{national}\: \\ $$$$\mathrm{football}\:\mathrm{team}.\:\mathrm{14}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{and} \\ $$$$\mathrm{defence},\:\mathrm{15}\:\mathrm{play}\:\mathrm{defence}\:\mathrm{and}\:\mathrm{attack}\: \\ $$$$\mathrm{and}\:\mathrm{3}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{only}.\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{players}\:\mathrm{who}\:\mathrm{play}\:\mathrm{attack}\:\mathrm{only}\:\mathrm{is}\: \\ $$$$\mathrm{twice}\:\mathrm{those}\:\mathrm{who}\:\mathrm{play}\:\mathrm{defence}\:\mathrm{only},\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{who}\:\mathrm{play}\:\mathrm{defence} \\ $$$$\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{those}\:\mathrm{who}\:\mathrm{play}\:\mathrm{attack}.\:\mathrm{If}\: \\ $$$$\mathrm{18}\:\mathrm{play}\:\mathrm{midfield}\:\mathrm{represent}\:\mathrm{the}\: \\ $$$$\mathrm{information}\:\mathrm{on}\:\mathrm{a}\:\mathrm{venn}\:\mathrm{diagram}. \\ $$$$\mathrm{Find} \\ $$$$\mathrm{i}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{at}\:\mathrm{most}\:\mathrm{two}\:\mathrm{games} \\ $$$$\mathrm{ii}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{neither}\:\mathrm{attack}\:\mathrm{nor} \\ $$$$\mathrm{defence} \\ $$$$\mathrm{iii}.\:\mathrm{how}\:\mathrm{many}\:\mathrm{play}\:\mathrm{either}\:\mathrm{midfield}\:\mathrm{or}\: \\ $$$$\mathrm{attack}. \\ $$

Question Number 57020    Answers: 0   Comments: 3

[f(x+1)−f(x)]^2 =4[f(x)−1] f(x)=? −−−−−−−−−−−−− f(0)=0

$$\left[{f}\left({x}+\mathrm{1}\right)−{f}\left({x}\right)\right]^{\mathrm{2}} =\mathrm{4}\left[{f}\left({x}\right)−\mathrm{1}\right] \\ $$$${f}\left({x}\right)=? \\ $$$$−−−−−−−−−−−−− \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$

Question Number 57012    Answers: 2   Comments: 0

Find the local minimum value of f(x) where f(x)= (x−(1/x))+((2/(x−(1/x)))) ?

$${Find}\:{the}\:{local}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$$${where}\:{f}\left({x}\right)=\:\left({x}−\frac{\mathrm{1}}{{x}}\right)+\left(\frac{\mathrm{2}}{{x}−\frac{\mathrm{1}}{{x}}}\right)\:? \\ $$

Question Number 57011    Answers: 1   Comments: 0

f(((x+y)/2))f(((x−y)/2))=g(x) g(x+y)g(x−y)=[f(x)]^2 −[f(y)]^2 f(x),g(x)=?

$${f}\left(\frac{{x}+{y}}{\mathrm{2}}\right){f}\left(\frac{{x}−{y}}{\mathrm{2}}\right)={g}\left({x}\right) \\ $$$${g}\left({x}+{y}\right){g}\left({x}−{y}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} −\left[{f}\left({y}\right)\right]^{\mathrm{2}} \\ $$$${f}\left({x}\right),{g}\left({x}\right)=? \\ $$

Question Number 57010    Answers: 1   Comments: 1

f(((x+y)/2))=((f(x)f(y))/(f(2))) f(x)=?

$${f}\left(\frac{{x}+{y}}{\mathrm{2}}\right)=\frac{{f}\left({x}\right){f}\left({y}\right)}{{f}\left(\mathrm{2}\right)} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 57007    Answers: 1   Comments: 3

cosec ((π/(14))) − 4 cos (((2π)/7)) = ?

$$\mathrm{cosec}\:\left(\frac{\pi}{\mathrm{14}}\right)\:−\:\mathrm{4}\:\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\:\:=\:\:? \\ $$

Question Number 57001    Answers: 0   Comments: 1

construct an analytic function f(z) whose real part is e^x cos y

$${construct}\:{an}\:{analytic}\:{function}\:{f}\left({z}\right)\:{whose}\:{real}\:{part}\:{is}\:{e}^{{x}} \mathrm{cos}\:{y} \\ $$

Question Number 57000    Answers: 3   Comments: 1

If (x+2)^2 is a factor of the polynomial f(x)=mx^3 +x^2 +x+n, find; the values of m and n.

$$\mathrm{If}\:\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{mx}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{n},\:\mathrm{find}; \\ $$$$\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}. \\ $$

Question Number 56991    Answers: 0   Comments: 4

x! − x^2 = 8 , Find x

$$\:\:\mathrm{x}!\:−\:\mathrm{x}^{\mathrm{2}} \:\:=\:\:\mathrm{8}\:,\:\:\:\:\mathrm{Find}\:\:\mathrm{x} \\ $$$$ \\ $$

Question Number 56986    Answers: 2   Comments: 1

Question Number 56971    Answers: 1   Comments: 1

Question Number 56962    Answers: 1   Comments: 1

find S_n =Σ_(k=0) ^n k^2 C_n ^k cos(2kx) interms of n.

$${find}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}^{\mathrm{2}} \:{C}_{{n}} ^{{k}} \:{cos}\left(\mathrm{2}{kx}\right) \\ $$$${interms}\:{of}\:{n}. \\ $$

Question Number 56961    Answers: 1   Comments: 0

Out of 6 mathematicians and 7 physicists a committee consisting of 3 mathematicians and 3 physicists is to be formed. In how many ways can this be done if two particular mathematicians cannot be on the commitee?

$$\mathrm{Out}\:\mathrm{of}\:\mathrm{6}\:\mathrm{mathematicians}\:\mathrm{and}\:\mathrm{7}\:\mathrm{physicists} \\ $$$$\mathrm{a}\:\mathrm{committee}\:\mathrm{consisting}\:\mathrm{of}\:\mathrm{3}\:\mathrm{mathematicians} \\ $$$$\mathrm{and}\:\mathrm{3}\:\mathrm{physicists}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{formed}.\:\mathrm{In}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{done}\:\mathrm{if}\:\mathrm{two}\: \\ $$$$\mathrm{particular}\:\mathrm{mathematicians}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{commitee}? \\ $$

Question Number 56954    Answers: 2   Comments: 1

Find minimum value of : cos(ω−φ)+cos(φ−ϕ)+cos (ϕ−ω).

$${Find}\:{minimum}\:{value}\:{of}\:: \\ $$$${cos}\left(\omega−\phi\right)+\mathrm{cos}\left(\phi−\varphi\right)+\mathrm{cos}\:\left(\varphi−\omega\right). \\ $$

Question Number 56951    Answers: 0   Comments: 2

The deviations from the mean of a set of numbers are (x+2), (2x−11), −9, (x+1)^2 , (x−4)^2 , (1−3x). find the value of x where x>0.

$$\mathrm{The}\:\mathrm{deviations}\:\mathrm{from}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{set}\:\mathrm{of}\:\mathrm{numbers}\:\mathrm{are}\:\left(\mathrm{x}+\mathrm{2}\right),\:\left(\mathrm{2x}−\mathrm{11}\right), \\ $$$$−\mathrm{9},\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} ,\:\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} ,\:\left(\mathrm{1}−\mathrm{3x}\right).\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{where}\:\mathrm{x}>\mathrm{0}. \\ $$

Question Number 56949    Answers: 0   Comments: 1

Question Number 56939    Answers: 1   Comments: 2

calculate ∫ (dx/((x+1)^3 (x^2 −3x +2))) 2) find the value of ∫_2 ^(+∞) (dx/((x+1)^3 (x^2 −3x+2)))

$${calculate}\:\int\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{3}{x}\:+\mathrm{2}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\right)} \\ $$

Question Number 56938    Answers: 0   Comments: 0

let A_n =∫∫_W_n e^(−xy) (√(x^2 +y^2 ))dxdy with W_n =[(1/n),n[×[(1/n),n[ 1) find A_n interms of n 2) determine lim_(n→+∞) A_n

$${let}\:{A}_{{n}} =\int\int_{{W}_{{n}} } {e}^{−{xy}} \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}\:\:\:{with}\:{W}_{{n}} =\left[\frac{\mathrm{1}}{{n}},{n}\left[×\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} {interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$ \\ $$

Question Number 56937    Answers: 0   Comments: 0

1. calculate f(x) =∫_0 ^(π/4) ln(1+xtanθ)dθ 2. calculate ∫_0 ^1 f(x)dx

$$\mathrm{1}.\:{calculate}\:\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left(\mathrm{1}+{xtan}\theta\right){d}\theta \\ $$$$\mathrm{2}.\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$

Question Number 56942    Answers: 0   Comments: 0

find U_n =∫_1 ^n (([(√(x+1))]−[(√x)])/x^3 ) dx 2) find nature of the serie Σ U_n

$${find}\:\:{U}_{{n}} =\int_{\mathrm{1}} ^{{n}} \:\frac{\left[\sqrt{{x}+\mathrm{1}}\right]−\left[\sqrt{{x}}\right]}{{x}^{\mathrm{3}} }\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 56935    Answers: 0   Comments: 1

1. calculate U_n =∫_0 ^∞ (x^3 −2x+1)e^(−n[x]) dx with n integr natural and n≥1 2. find nature of Σ U_n

$$\mathrm{1}.\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\left({x}^{\mathrm{3}} −\mathrm{2}{x}+\mathrm{1}\right){e}^{−{n}\left[{x}\right]} {dx}\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\mathrm{2}.\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 56932    Answers: 1   Comments: 0

let f_n (t) =∫_0 ^∞ (dx/((x^2 +t^2 )^n )) with n from N and n≥1 1. find a explicit form of f_n (t) 2. what is the value of g_n (t)=∫_0 ^∞ ((t dx)/((x^2 +t^2 )^(n+1) )) ? 3. calculate ∫_0 ^∞ (dx/((x^2 +3)^4 )) and ∫_0 ^∞ (dx/((x^2 +16)^3 ))

$${let}\:{f}_{{n}} \left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{from}\:{N}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\mathrm{1}.\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}_{{n}} \left({t}\right) \\ $$$$\mathrm{2}.\:{what}\:{is}\:{the}\:{value}\:{of} \\ $$$${g}_{{n}} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}\:{dx}}{\left({x}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }\:? \\ $$$$\mathrm{3}.\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{4}} } \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{16}\right)^{\mathrm{3}} } \\ $$

Question Number 56931    Answers: 1   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 −1)/((x^2 −x+3)^2 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 56921    Answers: 1   Comments: 0

Given : f(xy)=f(x).f(y)∀x,yεR and f(0)≠0 then f(x)=?

$${Given}\:: \\ $$$${f}\left({xy}\right)={f}\left({x}\right).{f}\left({y}\right)\forall{x},{y}\epsilon\mathbb{R}\:{and}\:{f}\left(\mathrm{0}\right)\neq\mathrm{0} \\ $$$${then}\:{f}\left({x}\right)=? \\ $$

Question Number 56914    Answers: 3   Comments: 0

The shortest distance between the point ((3/2),0) and the curve y=(√x) ,(x>0) is ?

$${The}\:{shortest}\:{distance}\:{between}\:{the}\:{point} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}},\mathrm{0}\right)\:{and}\:{the}\:{curve}\:{y}=\sqrt{{x}}\:,\left({x}>\mathrm{0}\right)\:{is}\:? \\ $$

Question Number 56913    Answers: 1   Comments: 2

How many possible solution sets that satisfy x_1 + x_2 + x_3 + x_4 = 5 with 0 ≤ x_1 ≤ 3 0 ≤ x_2 ≤ 3 0 ≤ x_3 ≤ 2 0 ≤ x_4 ≤ 2

$$\mathrm{How}\:\mathrm{many}\:\mathrm{possible}\:\mathrm{solution}\:\mathrm{sets}\:\mathrm{that}\:\mathrm{satisfy}\: \\ $$$${x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} \:+\:{x}_{\mathrm{4}} \:=\:\mathrm{5} \\ $$$$\mathrm{with} \\ $$$$\mathrm{0}\:\leqslant\:{x}_{\mathrm{1}} \:\leqslant\:\mathrm{3}\:\: \\ $$$$\mathrm{0}\:\leqslant\:{x}_{\mathrm{2}} \:\leqslant\:\mathrm{3} \\ $$$$\mathrm{0}\:\leqslant\:{x}_{\mathrm{3}} \:\leqslant\:\mathrm{2} \\ $$$$\mathrm{0}\:\leqslant\:{x}_{\mathrm{4}} \:\leqslant\:\mathrm{2} \\ $$

  Pg 1524      Pg 1525      Pg 1526      Pg 1527      Pg 1528      Pg 1529      Pg 1530      Pg 1531      Pg 1532      Pg 1533   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com