Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1529

Question Number 54841    Answers: 1   Comments: 0

Question Number 54830    Answers: 0   Comments: 1

let V_n = ∫_0 ^∞ ((cos(nx))/(n +x^2 ))dx with n integr nstural not 0 . 1) calculate V_n 2)calculate lim_(n→+∞) nV_n 3) calculate the sum Σ_(n=0) ^∞ V_n

$${let}\:{V}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}\:+{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:{n}\:{integr}\:{nstural}\:{not}\:\mathrm{0}\:. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} {nV}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{the}\:{sum}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{V}_{{n}} \\ $$

Question Number 54827    Answers: 0   Comments: 0

logx^2 +log_2 (x−6)=3 solve for x

$$\mathrm{logx}^{\mathrm{2}} +\mathrm{log}_{\mathrm{2}} \left(\mathrm{x}−\mathrm{6}\right)=\mathrm{3} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$

Question Number 54826    Answers: 4   Comments: 5

1) ∫_0 ^( 1) ((1−x^7 )^(1/4) −(1−x^4 )^(1/7) )dx = ? 2) If f(x)=x^3 +3x+4 then the value of ∫_(−1) ^( 1) f(x)dx + ∫_0 ^( 4) f^( −1) (x)dx = ? 3) ∫_(−π) ^( π) (1+cosx+cos2x+....+cos13x)(1+sinx+...+sin13x)dx=? 4) ∫_0 ^( 2) ((√(x^3 +1)) + (x^2 +2x)^(1/3) )dx =? (This time func. are not inverse of each other,right ?)

$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\left(\mathrm{1}−{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} −\left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \right){dx}\:=\:? \\ $$$$\left.\mathrm{2}\right)\:{If}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{3}{x}+\mathrm{4}\:{then}\:{the}\:{value}\:{of} \\ $$$$\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} {f}\left({x}\right){dx}\:+\:\int_{\mathrm{0}} ^{\:\mathrm{4}} {f}^{\:−\mathrm{1}} \left({x}\right){dx}\:=\:? \\ $$$$\left.\mathrm{3}\right)\:\int_{−\pi} ^{\:\pi} \left(\mathrm{1}+{cosx}+{cos}\mathrm{2}{x}+....+{cos}\mathrm{13}{x}\right)\left(\mathrm{1}+{sinx}+...+{sin}\mathrm{13}{x}\right){dx}=? \\ $$$$\left.\mathrm{4}\right)\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\left(\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:+\:\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\right){dx}\:=? \\ $$$$\left({This}\:{time}\:{func}.\:{are}\:{not}\:{inverse}\:{of}\:{each}\right. \\ $$$$\left.{other},{right}\:?\right) \\ $$

Question Number 54825    Answers: 1   Comments: 0

Question Number 54808    Answers: 1   Comments: 2

let p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n ) with n integr natural 1) find a simple form of p(x) 2) find roots of p(x)and decompose p(x) inside C[x] 3)calculate ∫_0 ^1 p(x)dx 4) decompose the fraction F(x)=(1/(p(x))) .

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{roots}\:{of}\:{p}\left({x}\right){and}\:{decompose} \\ $$$${p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{p}\left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)}\:. \\ $$

Question Number 54797    Answers: 1   Comments: 0

∫ (√( x + (√( x + (√(x + (√( .....)))))))) dx = ?

$$ \\ $$$$ \\ $$$$\:\:\:\int\:\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\boldsymbol{{x}}\:+\:\sqrt{\:.....}}}}\:\:\boldsymbol{{dx}}\:\:=\:\:\:? \\ $$$$ \\ $$

Question Number 54821    Answers: 0   Comments: 1

find lim_(n→+∞) ∫_0 ^n ((arctan(nx))/(n^2 +x^2 ))dx

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{arctan}\left({nx}\right)}{{n}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 54790    Answers: 3   Comments: 2

differenciatethefollowing i)x^x +(sinx)^(lnx) = ii)sin^(−1) (tanhx)= iii)(√(1+x^2 /1−x^2 =))

$${differenciatethefollowing} \\ $$$$\left.{i}\right){x}^{{x}} +\left({sinx}\right)^{{lnx}} = \\ $$$$\left.{ii}\right){sin}^{−\mathrm{1}} \left({tanhx}\right)= \\ $$$$\left.{iii}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} /\mathrm{1}−{x}^{\mathrm{2}} =} \\ $$

Question Number 54788    Answers: 2   Comments: 1

How can cut a right angeled triangle to make a square? how can cut a equilateral triangle to make a rectangle?

$${H}\boldsymbol{\mathrm{ow}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{right}}\:\boldsymbol{\mathrm{angeled}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{make}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{square}}? \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{equilateral}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{to}} \\ $$$$\boldsymbol{\mathrm{make}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{rectangle}}? \\ $$

Question Number 54787    Answers: 0   Comments: 0

if: (a/((√b)+(√c)))=(b/((√c)+(√d)))=(c/((√d)+(√a)))=(d/((√a)+(√b))) ⇒(a/d)=?

$$\:{if}:\:\:\frac{{a}}{\sqrt{{b}}+\sqrt{{c}}}=\frac{{b}}{\sqrt{{c}}+\sqrt{{d}}}=\frac{{c}}{\sqrt{{d}}+\sqrt{{a}}}=\frac{{d}}{\sqrt{{a}}+\sqrt{{b}}} \\ $$$$\Rightarrow\frac{{a}}{{d}}=? \\ $$

Question Number 54786    Answers: 0   Comments: 5

solve for:a,b,c,d∈R a^2 =b+(√c) b^2 =c+(√d) c^2 =d+(√a) d^2 =a+(√b)

$${solve}\:{for}:{a},{b},{c},{d}\in\boldsymbol{{R}} \\ $$$$\:\:\:\:\:\:{a}^{\mathrm{2}} ={b}+\sqrt{{c}} \\ $$$$\:\:\:\:\:\:{b}^{\mathrm{2}} ={c}+\sqrt{{d}} \\ $$$$\:\:\:\:\:\:{c}^{\mathrm{2}} ={d}+\sqrt{{a}} \\ $$$$\:\:\:\:\:\:{d}^{\mathrm{2}} ={a}+\sqrt{{b}} \\ $$

Question Number 54777    Answers: 0   Comments: 1

let u_n =∫_0 ^∞ ((sin(nx^2 ))/(x^2 +6))dx 1) calculate u_n and lim u_n (n→+∞) 2) find nature of Σ u_n and calaculate it. 3) find nature of Σ u_n ^2

$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({nx}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{6}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{u}_{{n}} \:\:\:{and}\:{lim}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:\:\:{and}\:{calaculate}\:{it}. \\ $$$$\left.\mathrm{3}\right)\:{find}\:{nature}\:\:{of}\:\Sigma\:{u}_{{n}} ^{\mathrm{2}} \\ $$

Question Number 54775    Answers: 0   Comments: 2

found something interesting, it was published by Tschirnhaus in 1683 we can reduce x^3 +ax^2 +bx+c=0 (1) to y^3 +py+q=0 (2) and further to z^3 =t (1) is the well known linear substitution y=x+(a/3) → x=y−(a/3) ⇒ y^3 −((a^2 −3b)/3)y+((2a^3 −9ab+27c)/(27))=0 p=−((a^2 −3b)/3) and q=((2a^3 −9ab+27c)/(27)) ⇒ y^3 +py+q=0 (2) quadratic substitution z=y^2 +αy+β → y^2 +αy+(β−z)=0 we could solve this for y and then plug in above... (Tschirnhaus did) but there′s an easier way: we calculate the determinant of the Sylvester Matrix we have (a) 1y^3 +0y^2 +py+q=0 (b) 0y^3 +y^2 +αy+(β−z)=0 the matrix is [(1,0,p,q,0),(0,1,0,p,q),(0,1,α,(β−z),0),(0,0,1,α,(β−z)),(1,α,(β−z),0,0) ] the determinant is −z^3 +(3β−2p)z^2 −(pα^2 +3qα+3β^2 −4pβ+p^2 )z −(qα^3 −pα^2 β−3qαβ+pqα−β^3 +2pβ^2 −p^2 β−q^2 )p we want the square and the linear terms to disappear so we set their constants zero to get α and β ⇒ β=((2p)/3); α=−((3q)/(2p))±((√(12p^3 +81q^2 ))/(6p)) this leads to z^3 =((8p^3 )/(27))+((27q^4 )/(2p^3 ))+4q^2 ±((q(√(3(4p^3 +27q^2 )^3 )))/(18p^3 )) Tschirnhaus thought he could solve polynomes of any degree with this method but it′s getting harder to solve because you need a cubic substitution to eliminate 3 constants and so on...

$$\mathrm{found}\:\mathrm{something}\:\mathrm{interesting},\:\mathrm{it}\:\mathrm{was}\:\mathrm{published} \\ $$$$\mathrm{by}\:\mathrm{Tschirnhaus}\:\mathrm{in}\:\mathrm{1683} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{reduce} \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{to} \\ $$$${y}^{\mathrm{3}} +{py}+{q}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{and}\:\mathrm{further}\:\mathrm{to} \\ $$$${z}^{\mathrm{3}} ={t} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{well}\:\mathrm{known}\:\mathrm{linear}\:\mathrm{substitution} \\ $$$${y}={x}+\frac{{a}}{\mathrm{3}}\:\rightarrow\:{x}={y}−\frac{{a}}{\mathrm{3}} \\ $$$$\Rightarrow\:{y}^{\mathrm{3}} −\frac{{a}^{\mathrm{2}} −\mathrm{3}{b}}{\mathrm{3}}{y}+\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{27}}=\mathrm{0} \\ $$$${p}=−\frac{{a}^{\mathrm{2}} −\mathrm{3}{b}}{\mathrm{3}}\:\mathrm{and}\:{q}=\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{27}} \\ $$$$\Rightarrow\:{y}^{\mathrm{3}} +{py}+{q}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{quadratic}\:\mathrm{substitution} \\ $$$${z}={y}^{\mathrm{2}} +\alpha{y}+\beta\:\rightarrow\:{y}^{\mathrm{2}} +\alpha{y}+\left(\beta−{z}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{could}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{for}\:{y}\:\mathrm{and}\:\mathrm{then}\:\mathrm{plug}\:\mathrm{in} \\ $$$$\mathrm{above}...\:\left(\mathrm{Tschirnhaus}\:\mathrm{did}\right)\:\mathrm{but}\:\mathrm{there}'\mathrm{s}\:\mathrm{an} \\ $$$$\mathrm{easier}\:\mathrm{way}:\:\mathrm{we}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{determinant}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Sylvester}\:\mathrm{Matrix} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\left({a}\right)\:\mathrm{1}{y}^{\mathrm{3}} +\mathrm{0}{y}^{\mathrm{2}} +{py}+{q}=\mathrm{0} \\ $$$$\left({b}\right)\:\mathrm{0}{y}^{\mathrm{3}} +{y}^{\mathrm{2}} +\alpha{y}+\left(\beta−{z}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{matrix}\:\mathrm{is} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{{p}}&{{q}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{{p}}&{{q}}\\{\mathrm{0}}&{\mathrm{1}}&{\alpha}&{\beta−{z}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\alpha}&{\beta−{z}}\\{\mathrm{1}}&{\alpha}&{\beta−{z}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{the}\:\mathrm{determinant}\:\mathrm{is} \\ $$$$−{z}^{\mathrm{3}} \\ $$$$\:\:+\left(\mathrm{3}\beta−\mathrm{2}{p}\right){z}^{\mathrm{2}} \\ $$$$\:\:−\left({p}\alpha^{\mathrm{2}} +\mathrm{3}{q}\alpha+\mathrm{3}\beta^{\mathrm{2}} −\mathrm{4}{p}\beta+{p}^{\mathrm{2}} \right){z} \\ $$$$\:\:−\left({q}\alpha^{\mathrm{3}} −{p}\alpha^{\mathrm{2}} \beta−\mathrm{3}{q}\alpha\beta+{pq}\alpha−\beta^{\mathrm{3}} +\mathrm{2}{p}\beta^{\mathrm{2}} −{p}^{\mathrm{2}} \beta−{q}^{\mathrm{2}} \right){p} \\ $$$$\mathrm{we}\:\mathrm{want}\:\mathrm{the}\:\mathrm{square}\:\mathrm{and}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{terms} \\ $$$$\mathrm{to}\:\mathrm{disappear}\:\mathrm{so}\:\mathrm{we}\:\mathrm{set}\:\mathrm{their}\:\mathrm{constants}\:\mathrm{zero} \\ $$$$\mathrm{to}\:\mathrm{get}\:\alpha\:\mathrm{and}\:\beta \\ $$$$\Rightarrow\:\beta=\frac{\mathrm{2}{p}}{\mathrm{3}};\:\alpha=−\frac{\mathrm{3}{q}}{\mathrm{2}{p}}\pm\frac{\sqrt{\mathrm{12}{p}^{\mathrm{3}} +\mathrm{81}{q}^{\mathrm{2}} }}{\mathrm{6}{p}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$${z}^{\mathrm{3}} =\frac{\mathrm{8}{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{\mathrm{27}{q}^{\mathrm{4}} }{\mathrm{2}{p}^{\mathrm{3}} }+\mathrm{4}{q}^{\mathrm{2}} \pm\frac{{q}\sqrt{\mathrm{3}\left(\mathrm{4}{p}^{\mathrm{3}} +\mathrm{27}{q}^{\mathrm{2}} \right)^{\mathrm{3}} }}{\mathrm{18}{p}^{\mathrm{3}} } \\ $$$$\mathrm{Tschirnhaus}\:\mathrm{thought}\:\mathrm{he}\:\mathrm{could}\:\mathrm{solve}\:\mathrm{polynomes} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{degree}\:\mathrm{with}\:\mathrm{this}\:\mathrm{method}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{getting} \\ $$$$\mathrm{harder}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{because}\:\mathrm{you}\:\mathrm{need}\:\mathrm{a}\:\mathrm{cubic} \\ $$$$\mathrm{substitution}\:\mathrm{to}\:\mathrm{eliminate}\:\mathrm{3}\:\mathrm{constants}\:\mathrm{and} \\ $$$$\mathrm{so}\:\mathrm{on}... \\ $$

Question Number 54770    Answers: 0   Comments: 0

A glass bottle full of mercury has mass 500g. On being heated through 35°C, 2.43g of mercury are expelled. Calculate the mass of mercury remaining in the bottle. (Cubic expansivity of mercury is 1.8 × 10^(−4) K^(−1) , linear expansivity of glass is 8.0 × 10^(−6) K^(−1) .

$$\mathrm{A}\:\mathrm{glass}\:\mathrm{bottle}\:\mathrm{full}\:\mathrm{of}\:\mathrm{mercury}\:\mathrm{has}\:\mathrm{mass}\:\mathrm{500g}.\:\mathrm{On}\:\mathrm{being}\:\mathrm{heated}\:\mathrm{through} \\ $$$$\mathrm{35}°\mathrm{C},\:\:\mathrm{2}.\mathrm{43g}\:\mathrm{of}\:\mathrm{mercury}\:\mathrm{are}\:\mathrm{expelled}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{mercury} \\ $$$$\mathrm{remaining}\:\mathrm{in}\:\mathrm{the}\:\mathrm{bottle}.\:\left(\mathrm{Cubic}\:\mathrm{expansivity}\:\mathrm{of}\:\mathrm{mercury}\:\mathrm{is}\:\:\mathrm{1}.\mathrm{8}\:×\:\mathrm{10}^{−\mathrm{4}} \:\mathrm{K}^{−\mathrm{1}} \:,\right. \\ $$$$\mathrm{linear}\:\mathrm{expansivity}\:\mathrm{of}\:\mathrm{glass}\:\mathrm{is}\:\:\mathrm{8}.\mathrm{0}\:×\:\mathrm{10}^{−\mathrm{6}} \mathrm{K}^{−\mathrm{1}} \:. \\ $$

Question Number 54767    Answers: 1   Comments: 1

A stone is thrown vertically upwards from a cliff 20m high. After a time of 3 s it passes the edge of the cliff on its way down. Calculate a) the speed of projection b) the speed when it hits the ground c) the times when it is 10m above the top of the cliff d) the time it is 15m above the ground (take g=10ms^(−2) ).

$$\mathrm{A}\:\mathrm{stone}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upwards} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{cliff}\:\mathrm{20m}\:\mathrm{high}.\:\mathrm{After}\:\mathrm{a}\:\mathrm{time}\:\mathrm{of}\:\mathrm{3}\:\mathrm{s} \\ $$$$\mathrm{it}\:\mathrm{passes}\:\mathrm{the}\:\mathrm{edge}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cliff}\:\mathrm{on}\:\mathrm{its}\:\mathrm{way} \\ $$$$\mathrm{down}.\:\mathrm{Calculate} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{projection} \\ $$$$\left.\mathrm{b}\right)\:\mathrm{the}\:\mathrm{speed}\:\mathrm{when}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left.\mathrm{c}\right)\:\mathrm{the}\:\mathrm{times}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{10m}\:\mathrm{above}\:\mathrm{the} \\ $$$$\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cliff} \\ $$$$\left.\mathrm{d}\right)\:\mathrm{the}\:\mathrm{time}\:\mathrm{it}\:\mathrm{is}\:\mathrm{15m}\:\mathrm{above}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left(\mathrm{take}\:\mathrm{g}=\mathrm{10ms}^{−\mathrm{2}} \right). \\ $$

Question Number 54765    Answers: 1   Comments: 0

Question Number 54756    Answers: 1   Comments: 0

solve ∫tan(x−θ)tan(x+θ)tan 2x dx

$${solve} \\ $$$$\int{tan}\left({x}−\theta\right){tan}\left({x}+\theta\right){tan}\:\mathrm{2}{x}\:{dx} \\ $$

Question Number 54755    Answers: 1   Comments: 0

solve for x sin[2cos^(−1) {cot(2tan^(−1) x)}]=0 (x = 1∓(√(2 )) , ∓1 ,−1∓(√2) )

$${solve}\:{for}\:{x} \\ $$$${sin}\left[\mathrm{2}{cos}^{−\mathrm{1}} \left\{{cot}\left(\mathrm{2}{tan}^{−\mathrm{1}} {x}\right)\right\}\right]=\mathrm{0} \\ $$$$ \\ $$$$\left({x}\:=\:\mathrm{1}\mp\sqrt{\mathrm{2}\:}\:,\:\mp\mathrm{1}\:,−\mathrm{1}\mp\sqrt{\mathrm{2}}\:\:\right) \\ $$

Question Number 54745    Answers: 0   Comments: 0

(√(1−x^2 +))(√(1−y^2 ))=a(x−y) (dy/dx)=(√((1−y^2 )/(1−x^2 ))) without solve put x=sinθand y=sinφ direct solve

$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} +}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }={a}\left({x}−{y}\right) \\ $$$$\frac{{dy}}{{dx}}=\sqrt{\frac{\mathrm{1}−{y}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${without}\:{solve}\:{put}\:{x}={sin}\theta{and} \\ $$$${y}={sin}\phi \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${direct}\:{solve} \\ $$

Question Number 54741    Answers: 1   Comments: 1

such that 1. ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2 =(((2n)!)/((n!)^2 )) 2. ((n),(0) )+(1/2) ((n),(1) )+...+(1/(n+1)) ((n),(n) )^2 =((2^(n+1) −1)/(n+1))

$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}^{\mathrm{2}} +...+\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}.\:\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}+\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}+...+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}} \\ $$

Question Number 54740    Answers: 3   Comments: 0

Prove that 1. ((n),(r) ) = (((n−1)),(( r)) ) + (((n−1)),(( r−1)) ) 2. ((n),(r) ) + ((( n)),((r−1)) ) = (((n+1)),(( r)) ) 3. ((n),(0) )+ ((n),(1) )+ ((n),(2) )+..+ ((n),(n) )=2^n

$${Prove}\:{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\:+\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:{r}−\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{2}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\: \\ $$$$\mathrm{3}.\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}+..+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}=\mathrm{2}^{{n}} \\ $$

Question Number 54737    Answers: 0   Comments: 0

Question Number 54730    Answers: 0   Comments: 3

prove lnx≤x

$${prove}\:{lnx}\leqslant{x} \\ $$

Question Number 54716    Answers: 0   Comments: 6

A light horizontal meter rule PQR has the end P fixed to vertical wall, while a weight of 5N is suspended from the end R. A light string QS of length 50cm fixed to the wall at S is used to maintain the meter rule in equilibrium. If PQ = 40 cm, the tension in the string is ?

$$\mathrm{A}\:\mathrm{light}\:\mathrm{horizontal}\:\mathrm{meter}\:\mathrm{rule}\:\:\mathrm{PQR}\:\:\mathrm{has}\:\mathrm{the}\:\mathrm{end}\:\:\mathrm{P}\:\mathrm{fixed}\:\mathrm{to}\: \\ $$$$\mathrm{vertical}\:\mathrm{wall},\:\mathrm{while}\:\mathrm{a}\:\mathrm{weight}\:\mathrm{of}\:\:\mathrm{5N}\:\mathrm{is}\:\mathrm{suspended}\:\mathrm{from}\:\mathrm{the}\:\mathrm{end} \\ $$$$\mathrm{R}.\:\mathrm{A}\:\mathrm{light}\:\mathrm{string}\:\mathrm{QS}\:\:\mathrm{of}\:\mathrm{length}\:\:\mathrm{50cm}\:\mathrm{fixed}\:\mathrm{to}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{at}\:\mathrm{S}\:\mathrm{is}\: \\ $$$$\mathrm{used}\:\mathrm{to}\:\mathrm{maintain}\:\mathrm{the}\:\mathrm{meter}\:\mathrm{rule}\:\mathrm{in}\:\mathrm{equilibrium}. \\ $$$$\mathrm{If}\:\:\mathrm{PQ}\:=\:\mathrm{40}\:\mathrm{cm},\:\:\:\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{string}\:\mathrm{is}\:? \\ $$

Question Number 54721    Answers: 0   Comments: 0

Show that ((Σ{sin 2xtan (y−z)cos^2 (y+z)})/(Σ{cos 2xtan (y−z)sin^2 (y+z)} )) = tan 2xtan 2ytan 2z

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\frac{\Sigma\left\{\mathrm{sin}\:\mathrm{2xtan}\:\left(\mathrm{y}−\mathrm{z}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{y}+\mathrm{z}\right)\right\}}{\Sigma\left\{\mathrm{cos}\:\mathrm{2xtan}\:\left(\mathrm{y}−\mathrm{z}\right)\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{y}+\mathrm{z}\right)\right\}\:\:\:}\:\:=\:\mathrm{tan}\:\mathrm{2xtan}\:\mathrm{2ytan}\:\mathrm{2z} \\ $$

  Pg 1524      Pg 1525      Pg 1526      Pg 1527      Pg 1528      Pg 1529      Pg 1530      Pg 1531      Pg 1532      Pg 1533   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com