Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1526

Question Number 50364    Answers: 0   Comments: 0

let A = (((2 1)),((1 2)) ) calculate A^n

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix} \\ $$$${calculate}\:{A}^{{n}} \\ $$

Question Number 50363    Answers: 0   Comments: 0

let p ∈K_n [x] snd A and H two rlements of K[x] 1) prove that p(A(x)+H(x))=Σ_(k=0) ^n ((p^((k)) (A(x)))/(k!)).(H(x))^k 2)find the condition that p(A(x)+H(x))is divided by H(x)≠0 3) if p(x)≠c prove that p(p(x))−x is divided by p(x)−x.

$${let}\:{p}\:\in{K}_{{n}} \left[{x}\right]\:{snd}\:{A}\:{and}\:{H}\:{two}\:{rlements}\:{of}\:{K}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \frac{{p}^{\left({k}\right)} \left({A}\left({x}\right)\right)}{{k}!}.\left({H}\left({x}\right)\right)^{{k}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{condition}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right){is} \\ $$$${divided}\:{by}\:{H}\left({x}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{if}\:{p}\left({x}\right)\neq{c}\:{prove}\:\:{that}\:{p}\left({p}\left({x}\right)\right)−{x}\:{is}\:{divided} \\ $$$${by}\:{p}\left({x}\right)−{x}. \\ $$

Question Number 50362    Answers: 0   Comments: 0

calculate S_1 =Σ_(k=0) ^n C_n ^k S_2 =Σ_(k=0) ^([(n/2)]) C_n ^(2k) S_3 = Σ_(k=0) ^([(n/3)]) C_n ^(3k)

$${calculate}\:{S}_{\mathrm{1}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \\ $$$${S}_{\mathrm{2}} =\sum_{{k}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{k}} \\ $$$${S}_{\mathrm{3}} =\:\sum_{{k}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{3}}\right]} \:{C}_{{n}} ^{\mathrm{3}{k}} \\ $$

Question Number 50360    Answers: 0   Comments: 0

find radius of convergence for the serie Σ_(n=0) ^∞ {(1+i)^n −(1−i)^n }x^n

$${find}\:{radius}\:{of}\:{convergence}\:{for}\:{the}\:{serie} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \left\{\left(\mathrm{1}+{i}\right)^{{n}} −\left(\mathrm{1}−{i}\right)^{{n}} \right\}{x}^{{n}} \\ $$

Question Number 50359    Answers: 0   Comments: 0

1) calculate Σ_(n=0) ^∞ (−1)^k C_n ^k (1/(k+1)) 2)calculate S_n (p)=Σ_(k=0) ^n (−1)^k (C_n ^k /(p+k+1)) p integr natural.

$$\left.\mathrm{1}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{S}_{{n}} \left({p}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \:\:\:\frac{{C}_{{n}} ^{{k}} }{{p}+{k}+\mathrm{1}} \\ $$$${p}\:{integr}\:{natural}. \\ $$

Question Number 50357    Answers: 1   Comments: 1

Question Number 50356    Answers: 0   Comments: 0

devompose inside C[x] and R[x] the polynom 1)x^4 +1 2)x^6 −1 3)x^8 +x^4 +1

$${devompose}\:{inside}\:{C}\left[{x}\right]\:{and}\:{R}\left[{x}\right]\:{the}\:{polynom} \\ $$$$\left.\mathrm{1}\right){x}^{\mathrm{4}} +\mathrm{1}\:\:\:\: \\ $$$$\left.\mathrm{2}\right){x}^{\mathrm{6}} −\mathrm{1} \\ $$$$\left.\mathrm{3}\right){x}^{\mathrm{8}} \:+{x}^{\mathrm{4}} \:+\mathrm{1} \\ $$

Question Number 50355    Answers: 0   Comments: 0

let (α_k ) (k∈[[0,n−1]] the n^(eme) roots of 1 calculate p(x,y)=(x+α_0 y)(x+α_1 y)....(x+α_(n−1) y)

$${let}\:\left(\alpha_{{k}} \right)\:\:\left({k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:{the}\:{n}^{{eme}} \:{roots}\:{of}\:\mathrm{1}\right. \\ $$$${calculate}\:{p}\left({x},{y}\right)=\left({x}+\alpha_{\mathrm{0}} {y}\right)\left({x}+\alpha_{\mathrm{1}} {y}\right)....\left({x}+\alpha_{{n}−\mathrm{1}} {y}\right) \\ $$

Question Number 50354    Answers: 0   Comments: 0

((x)=a_k ) _(1≤k≤n) is a sequence of reals let p(x) =Π_(k=1) ^n (cos(a_k )+xsin(a_k )) if p(x)=(x^2 +1)q +r find q and r

$$\left(\left({x}\right)={a}_{{k}} \right)\:_{\mathrm{1}\leqslant{k}\leqslant{n}} \:{is}\:{a}\:{sequence}\:{of}\:{reals}\:{let} \\ $$$${p}\left({x}\right)\:=\prod_{{k}=\mathrm{1}} ^{{n}} \left({cos}\left({a}_{{k}} \right)+{xsin}\left({a}_{{k}} \right)\right) \\ $$$${if}\:{p}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right){q}\:+{r}\:\:\:{find}\:{q}\:{and}\:{r} \\ $$$$ \\ $$

Question Number 50353    Answers: 0   Comments: 0

let p(x)=x^(4n) −x^(3n) +x^(2n) −x^n +1 and q(x)=x^4 −x^3 +x^2 −x+1 determine the integr n to have q divide p.

$${let}\:{p}\left({x}\right)={x}^{\mathrm{4}{n}} −{x}^{\mathrm{3}{n}} +{x}^{\mathrm{2}{n}} −{x}^{{n}} +\mathrm{1}\:{and} \\ $$$${q}\left({x}\right)={x}^{\mathrm{4}} −{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −{x}+\mathrm{1}\:\:{determine}\:{the}\:{integr}\:{n} \\ $$$${to}\:{have}\:{q}\:{divide}\:{p}. \\ $$

Question Number 50352    Answers: 1   Comments: 5

The distances from a point to the sides of a triangle are p,q,r. Find the maximum (or minimum) area of the triangle, if it exists. Assume r≤q≤p.

$${The}\:{distances}\:{from}\:{a}\:{point}\:{to}\:{the}\:{sides} \\ $$$${of}\:{a}\:{triangle}\:{are}\:{p},{q},{r}.\:{Find}\:{the}\: \\ $$$${maximum}\:\left({or}\:{minimum}\right)\:{area}\:{of}\:{the} \\ $$$${triangle},\:{if}\:{it}\:{exists}. \\ $$$${Assume}\:{r}\leqslant{q}\leqslant{p}. \\ $$

Question Number 50328    Answers: 2   Comments: 0

Question Number 50330    Answers: 1   Comments: 1

Question Number 50299    Answers: 1   Comments: 7

please help me solve these two questions 1. A magician cuts a rope into two parts at a point selected at random. what is the probability that the length of the longer rope is at least 8 times the length of the shorter rope. 2. find the sum of co−efficient of thebinomial expansion of (4x−1)^(16)

$${please}\:{help}\:{me}\:{solve}\:{these}\:{two} \\ $$$${questions}\: \\ $$$$\mathrm{1}.\:{A}\:{magician}\:{cuts}\:{a}\:{rope}\:{into}\:{two}\: \\ $$$$\:\:{parts}\:{at}\:{a}\:{point}\:{selected}\:{at}\: \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability}\:{that} \\ $$$${the}\:{length}\:{of}\:\:{the}\:{longer}\:\:{rope}\:{is}\:{at}\:{least}\: \\ $$$$\mathrm{8}\:{times}\:{the}\:{length}\:{of}\:{the}\:{shorter}\: \\ $$$${rope}. \\ $$$$\mathrm{2}.\:{find}\:{the}\:{sum}\:{of}\:{co}−{efficient}\:{of}\: \\ $$$${thebinomial}\:\:{expansion}\:\:{of}\:\: \\ $$$$\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{16}} \\ $$$$ \\ $$

Question Number 50293    Answers: 2   Comments: 4

lim_(x→0) Σ_(r=1) ^(2n) ((1/(r+n)))=? please help

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(\frac{\mathrm{1}}{{r}+{n}}\right)=? \\ $$$${please}\:{help} \\ $$

Question Number 50279    Answers: 2   Comments: 0

{ ((x+y=6)),((y+z=10)) :} (x,y,z>0)

$$\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{6}}\\{\mathrm{y}+\mathrm{z}=\mathrm{10}}\end{cases}\:\:\left(\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\right) \\ $$

Question Number 50278    Answers: 1   Comments: 6

(√(a+(√(a−x)))) + (√(a−(√(a+x)))) = 2x please i beg u guys please solve this question

$$\sqrt{\mathrm{a}+\sqrt{\mathrm{a}−\mathrm{x}}}\:+\:\sqrt{\mathrm{a}−\sqrt{\mathrm{a}+\mathrm{x}}}\:=\:\mathrm{2x} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{beg}\:\mathrm{u}\:\mathrm{guys}\: \\ $$$$\mathrm{please}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{question} \\ $$

Question Number 50275    Answers: 1   Comments: 0

Question Number 50274    Answers: 2   Comments: 0

Question Number 50258    Answers: 1   Comments: 0

A delegation of 4 students is to be selected from a total of 12 students. In how many ways can the delegation be selected if: 1) 2 particular students wish to be included together only in the delegation? 2) 2 particular students refuse to be together and 2 other particular students wish to be together only in the delegation?

$${A}\:{delegation}\:{of}\:\mathrm{4}\:{students}\:{is}\:{to}\:{be} \\ $$$${selected}\:{from}\:{a}\:{total}\:{of}\:\mathrm{12}\:{students}. \\ $$$${In}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{delegation} \\ $$$${be}\:{selected}\:{if}: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{2}\:{particular}\:{students}\:{wish}\:{to}\:{be}\: \\ $$$${included}\:{together}\:{only}\:{in}\:{the}\:{delegation}? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{2}\:{particular}\:{students}\:{refuse}\:{to}\:{be}\: \\ $$$${together}\:{and}\:\mathrm{2}\:{other}\:{particular}\:{students} \\ $$$${wish}\:{to}\:{be}\:{together}\:{only}\:{in}\:{the}\:{delegation}? \\ $$

Question Number 50257    Answers: 1   Comments: 0

Question Number 50248    Answers: 1   Comments: 0

Question Number 50228    Answers: 0   Comments: 3

Question Number 50226    Answers: 0   Comments: 1

Three prizes are awarded each for getting more than 80%marks, 98% attendance and good behaviour in the college.In how many ways the prozes can be awarded if 15 student of the college are eligible for the three prizes?

$$\mathrm{Three}\:\mathrm{prizes}\:\mathrm{are}\:\mathrm{awarded}\:\mathrm{each}\:\mathrm{for} \\ $$$$\mathrm{getting}\:\mathrm{more}\:\mathrm{than}\:\mathrm{80\%marks}, \\ $$$$\mathrm{98\%}\:\mathrm{attendance}\:\mathrm{and}\:\mathrm{good} \\ $$$$\mathrm{behaviour}\:\mathrm{in}\:\mathrm{the}\:\mathrm{college}.\mathrm{In}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{ways}\:\mathrm{the}\:\mathrm{prozes}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{awarded}\:\mathrm{if}\:\mathrm{15}\:\mathrm{student}\:\mathrm{of}\:\mathrm{the}\:\mathrm{college} \\ $$$$\mathrm{are}\:\mathrm{eligible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{three}\:\mathrm{prizes}? \\ $$

Question Number 50220    Answers: 0   Comments: 4

Question Number 50219    Answers: 7   Comments: 0

  Pg 1521      Pg 1522      Pg 1523      Pg 1524      Pg 1525      Pg 1526      Pg 1527      Pg 1528      Pg 1529      Pg 1530   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com