Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1523

Question Number 57607    Answers: 1   Comments: 3

Question Number 57602    Answers: 1   Comments: 1

Question Number 57601    Answers: 2   Comments: 1

Question Number 57599    Answers: 2   Comments: 0

Question Number 57585    Answers: 2   Comments: 0

knowing that x+y=1. what is the result of (y/x)+(x/y)

$${knowing}\:{that}\:{x}+{y}=\mathrm{1}.\:{what}\:{is}\:{the}\:{result}\:{of}\:\frac{{y}}{{x}}+\frac{{x}}{{y}} \\ $$

Question Number 57578    Answers: 2   Comments: 0

Minimum distance between curves y^2 =4x and x^2 +y^2 −12x+31=0 is ?

$${Minimum}\:{distance}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{31}=\mathrm{0}\:{is}\:? \\ $$

Question Number 57572    Answers: 1   Comments: 0

∫sec^4 2xdx

$$\int\mathrm{sec}^{\mathrm{4}} \mathrm{2xdx} \\ $$

Question Number 57571    Answers: 0   Comments: 1

Question Number 57594    Answers: 1   Comments: 0

ABCD is four digits integers . How many ABCD that suitable with A+B+C+D = 25 ?

$${ABCD}\:\:{is}\:\:{four}\:\:{digits}\:\:{integers}\:. \\ $$$${How}\:\:{many}\:\:{ABCD}\:\:{that}\:\:{suitable}\:\:{with}\:\:{A}+{B}+{C}+{D}\:\:=\:\:\mathrm{25}\:? \\ $$

Question Number 57551    Answers: 1   Comments: 1

Question Number 57549    Answers: 0   Comments: 1

first question. solve for x: Σ_(k=1) ^5 kx=60

$${first}\:{question}. \\ $$$${solve}\:{for}\:{x}:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{5}} {\sum}}{kx}=\mathrm{60} \\ $$

Question Number 57529    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^3 (n+1)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)} \\ $$

Question Number 57525    Answers: 1   Comments: 0

Question Number 57522    Answers: 3   Comments: 3

The radius of circle having minimum area,which touches the curve y=4−x^2 and the lines y=∣x∣ is ?

$${The}\:{radius}\:{of}\:{circle}\:{having}\:{minimum} \\ $$$${area},{which}\:{touches}\:{the}\:{curve}\:{y}=\mathrm{4}−{x}^{\mathrm{2}} \\ $$$${and}\:{the}\:{lines}\:{y}=\mid{x}\mid\:{is}\:? \\ $$

Question Number 57521    Answers: 2   Comments: 1

Question Number 57515    Answers: 1   Comments: 4

Question Number 57513    Answers: 0   Comments: 4

There are 128 players in the first round of a knockout competition. Half of the players were knocked out in each round. How many players took part in the fourth round? How many rounds were there in this competion?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{128}\:\mathrm{players}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{round} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{knockout}\:\mathrm{competition}.\:\mathrm{Half}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{players}\:\mathrm{were}\:\mathrm{knocked}\:\mathrm{out}\:\mathrm{in}\:\mathrm{each}\:\mathrm{round}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{players}\:\mathrm{took}\:\mathrm{part}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{fourth}\:\mathrm{round}?\:\mathrm{How}\:\mathrm{many}\:\mathrm{rounds}\:\mathrm{were}\:\mathrm{there} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{competion}? \\ $$

Question Number 57494    Answers: 1   Comments: 1

Question Number 57491    Answers: 1   Comments: 0

If R is a region enclosed by y = f(x), y = g(x), x = a, x = b, is it possible to have f(x) and g(x) such that the center of gravity (x^ , y^ ) is not inside R ?

$$\mathrm{If}\:{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{region}\:\mathrm{enclosed}\:\mathrm{by}\:{y}\:=\:{f}\left({x}\right),\:{y}\:=\:{g}\left({x}\right),\:{x}\:=\:{a},\:{x}\:=\:{b}, \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{have}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right)\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{gravity}\:\left(\bar {{x}},\:\bar {{y}}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{inside}\:{R}\:? \\ $$

Question Number 57490    Answers: 1   Comments: 2

1)findF(a)= ∫_0 ^∞ ((cos(ln(2+x^2 )))/(a^2 +x^2 ))dx witha>0 2) find the value of ∫_0 ^∞ ((cos(ln(2+x^2 )))/(4+x^2 ))dx.

$$\left.\mathrm{1}\right){findF}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dx}\:\:{witha}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 57489    Answers: 1   Comments: 1

find the value of Σ_(n=2) ^∞ ((3n^2 +1)/((n−1)^3 (n+1)^3 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 57488    Answers: 1   Comments: 1

let A_n =∫_0 ^n ((t[t])/(3+t^2 ))dt 1)calculate lim_(n→+∞) A_n 2) find nature if Σ A_n

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{t}\left[{t}\right]}{\mathrm{3}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{if}\:\Sigma\:{A}_{{n}} \\ $$

Question Number 57487    Answers: 0   Comments: 1

calculate lim_(x→1) ∫_x ^x^2 ((arctan(t))/(sint))dt .

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left({t}\right)}{{sint}}{dt}\:. \\ $$

Question Number 57486    Answers: 0   Comments: 4

let f(x) =((ln(1+x))/(2−x^2 )) 1)calculate f^((n)) (x) 2) calculate f^((n)) (0) 3)developp f(x) at integr serie.

$${let}\:{f}\left({x}\right)\:=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:\: \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right){developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$

Question Number 57480    Answers: 0   Comments: 2

if F(x,y)=F(y,x) and x+y=c (constant) prove that F_(max or min) =F((c/2),(c/2)).

$${if}\:{F}\left({x},{y}\right)={F}\left({y},{x}\right)\:{and}\:{x}+{y}={c}\:\left({constant}\right) \\ $$$${prove}\:{that}\:{F}_{{max}\:{or}\:{min}} ={F}\left(\frac{{c}}{\mathrm{2}},\frac{{c}}{\mathrm{2}}\right). \\ $$

Question Number 57474    Answers: 1   Comments: 2

prove sin18×cos36=(1/4)

$$\mathrm{prove}\: \\ $$$$\boldsymbol{{sin}}\mathrm{18}×\boldsymbol{{cos}}\mathrm{36}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

  Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522      Pg 1523      Pg 1524      Pg 1525      Pg 1526      Pg 1527   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com