Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1521

Question Number 58145    Answers: 1   Comments: 0

how to factorize a^3 b^2 +a^2 b^3

$${how}\:{to}\:{factorize} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{3}} \: \\ $$

Question Number 58135    Answers: 1   Comments: 0

Question Number 58132    Answers: 2   Comments: 1

Question Number 58113    Answers: 0   Comments: 1

once sgain: it′s boring to solve questions of minor complexity. we don′t have to, we do it to help unexperienced people to grow. you could at least type “thanks”. otherwise you might be ignored after a while...

$$\mathrm{once}\:\mathrm{sgain}:\:\mathrm{it}'\mathrm{s}\:\mathrm{boring}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{of} \\ $$$$\mathrm{minor}\:\mathrm{complexity}.\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to},\:\mathrm{we}\:\mathrm{do} \\ $$$$\mathrm{it}\:\mathrm{to}\:\mathrm{help}\:\mathrm{unexperienced}\:\mathrm{people}\:\mathrm{to}\:\mathrm{grow}. \\ $$$$\mathrm{you}\:\mathrm{could}\:\mathrm{at}\:\mathrm{least}\:\mathrm{type}\:``\mathrm{thanks}''.\:\mathrm{otherwise} \\ $$$$\mathrm{you}\:\mathrm{might}\:\mathrm{be}\:\mathrm{ignored}\:\mathrm{after}\:\mathrm{a}\:\mathrm{while}... \\ $$

Question Number 58103    Answers: 1   Comments: 0

f(x)=−x^6 +3 x^4 + 4x^2 find the zeros

$${f}\left({x}\right)=−{x}^{\mathrm{6}} +\mathrm{3}\:{x}^{\mathrm{4}} \:+\:\mathrm{4}{x}^{\mathrm{2}} {find}\:{the}\:{zeros} \\ $$

Question Number 58097    Answers: 2   Comments: 0

Find the angle between the curves: 1)x^2 y=1−y and x^3 =2−2y. 2) x^2 +y^2 =a^2 (√2) and x^2 −y^2 =a^2 .

$${Find}\:{the}\:{angle}\:{between}\:{the}\:{curves}: \\ $$$$\left.\mathrm{1}\right){x}^{\mathrm{2}} {y}=\mathrm{1}−{y}\:{and}\:{x}^{\mathrm{3}} =\mathrm{2}−\mathrm{2}{y}. \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \sqrt{\mathrm{2}}\:{and}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={a}^{\mathrm{2}} . \\ $$

Question Number 58092    Answers: 3   Comments: 0

6x^3 +5x^2 −6x−5=0

$$\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{5}=\mathrm{0} \\ $$

Question Number 58091    Answers: 2   Comments: 0

27x^(3−1=0)

$$\mathrm{27}{x}^{\mathrm{3}−\mathrm{1}=\mathrm{0}} \\ $$

Question Number 58090    Answers: 1   Comments: 0

(x^4 −x^3 −38x^2 −31x+45)÷(x+5)

$$\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{38}{x}^{\mathrm{2}} −\mathrm{31}{x}+\mathrm{45}\right)\boldsymbol{\div}\left({x}+\mathrm{5}\right) \\ $$

Question Number 58084    Answers: 0   Comments: 3

Question Number 58079    Answers: 1   Comments: 0

f(x)=2^3 +x^2 −5x+2;x+2

$${f}\left({x}\right)=\mathrm{2}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{2};{x}+\mathrm{2} \\ $$

Question Number 58077    Answers: 1   Comments: 0

(3/(10))×2

$$\frac{\mathrm{3}}{\mathrm{10}}×\mathrm{2} \\ $$

Question Number 58076    Answers: 2   Comments: 1

a^x =m ⇒log_a m = x So is following true i^2 =−1 log_i (−1)=2

$$\:{a}^{{x}} ={m} \\ $$$$\Rightarrow\mathrm{log}_{{a}} {m}\:=\:{x} \\ $$$${So}\:{is}\:{following}\:{true} \\ $$$${i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\mathrm{log}_{{i}} \left(−\mathrm{1}\right)=\mathrm{2}\: \\ $$

Question Number 58060    Answers: 0   Comments: 3

Having given log 2 = 0.30103, find the position of the first significant figure in 2^(−37) .

$${Having}\:{given}\:\mathrm{log}\:\mathrm{2}\:=\:\mathrm{0}.\mathrm{30103},\:{find}\:{the}\:{position} \\ $$$${of}\:{the}\:{first}\:{significant}\:{figure}\:{in}\:\mathrm{2}^{−\mathrm{37}} . \\ $$

Question Number 58056    Answers: 1   Comments: 0

If the constant forces 2i−5j+6k and −i+2j−k act on a particle due to which it is displaced from a point A(4,−3,−2) to a point B(6, 1,−3), then the work done by the forces is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{forces}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{5}\boldsymbol{\mathrm{j}}+\mathrm{6}\boldsymbol{\mathrm{k}}\:\mathrm{and} \\ $$$$−\boldsymbol{\mathrm{i}}+\mathrm{2}\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}}\:\mathrm{act}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{due}\:\mathrm{to}\:\mathrm{which} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{displaced}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:{A}\left(\mathrm{4},−\mathrm{3},−\mathrm{2}\right) \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{point}\:{B}\left(\mathrm{6},\:\mathrm{1},−\mathrm{3}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{work}\: \\ $$$$\mathrm{done}\:\mathrm{by}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{is} \\ $$

Question Number 58055    Answers: 1   Comments: 0

If the constant forces 2i−5j+6k and −i+2j−k act on a particle due to which it is displaced from a point A(4,−3,−2) to a point B(6, 1,−3), then the work done by the forces is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{forces}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{5}\boldsymbol{\mathrm{j}}+\mathrm{6}\boldsymbol{\mathrm{k}}\:\mathrm{and} \\ $$$$−\boldsymbol{\mathrm{i}}+\mathrm{2}\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}}\:\mathrm{act}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{due}\:\mathrm{to}\:\mathrm{which} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{displaced}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:{A}\left(\mathrm{4},−\mathrm{3},−\mathrm{2}\right) \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{point}\:{B}\left(\mathrm{6},\:\mathrm{1},−\mathrm{3}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{work}\: \\ $$$$\mathrm{done}\:\mathrm{by}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{is} \\ $$

Question Number 58051    Answers: 1   Comments: 0

Question Number 58050    Answers: 1   Comments: 0

Question Number 58049    Answers: 0   Comments: 0

Question Number 58046    Answers: 2   Comments: 0

3x^4 −4x^3 −7x^2 −4x+5=0 x=?

$$\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{7}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}+\mathrm{5}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 58043    Answers: 0   Comments: 1

how can i use the equation i created in app in power point?

$${how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{use}\:\mathrm{the}\:\mathrm{equation}\:{i}\:{created}\:{in}\:{app}\:{in}\:\mathrm{po}{wer}\:{point}? \\ $$

Question Number 58069    Answers: 1   Comments: 4

Between 100 and 600, how many number are such which are totally divisible by 11 or 17.

$${Between}\:\mathrm{100}\:{and}\:\mathrm{600},\:{how}\:{many}\:{number} \\ $$$${are}\:{such}\:{which}\:{are}\:{totally}\:{divisible}\:{by}\:\mathrm{11}\:{or}\:\mathrm{17}. \\ $$

Question Number 58067    Answers: 0   Comments: 1

Question Number 58027    Answers: 1   Comments: 0

Question Number 58025    Answers: 1   Comments: 1

Trace the changes in the sign and magnitude of ((sin 3θ)/(cos 2θ)) as the angle increases from 0 to (π/2). also find its minimum and maximum values.

$${Trace}\:{the}\:{changes}\:{in}\:{the}\:{sign}\:{and}\:{magnitude} \\ $$$${of}\:\:\frac{\mathrm{sin}\:\mathrm{3}\theta}{\mathrm{cos}\:\mathrm{2}\theta}\:{as}\:{the}\:{angle}\:{increases}\:{from}\:\mathrm{0}\:{to}\:\frac{\pi}{\mathrm{2}}. \\ $$$${also}\:{find}\:{its}\:{minimum}\:{and}\:{maximum}\:{values}. \\ $$

Question Number 58016    Answers: 2   Comments: 1

Value of lim_(x→0) ((cosh x−cos x)/(xsin x)) =?

$${Value}\:{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosh}\:{x}−\mathrm{cos}\:{x}}{{x}\mathrm{sin}\:{x}}\:=? \\ $$

  Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522      Pg 1523      Pg 1524      Pg 1525   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com