let f(x) =∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dx with x from R and x≠0
1) find a explicit form of f(x)
2) extract A =Re(f(x)) and B =Im(f(x)) and find its values .
3) calculate ∫_0 ^∞ ((cos(2t))/((2t^2 +i)^2 ))dt
4) let U_n =∫_0 ^∞ ((cos(nt))/((nt^2 +i)^2 ))dt .calculate lim_(n→+∞) u_n
and study the convergence of Σu_n