Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1521

Question Number 57864    Answers: 1   Comments: 0

Question Number 58001    Answers: 1   Comments: 1

Question Number 57850    Answers: 1   Comments: 0

lim_(n→∞) (8^n /(2^(n+1) +3^(n+2) ))

$$\underset{{n}\rightarrow\infty} {{lim}}\:\:\frac{\mathrm{8}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{3}^{{n}+\mathrm{2}} } \\ $$

Question Number 57848    Answers: 0   Comments: 2

1)prove that arctan(a) +arctanb =arctan(((a+b)/(1−ab))) with ab≠1 2)find the value of S_N = Σ_(n=1) ^N (−1)^n arctan(((2n+1)/(n^2 +n−1)))

$$\left.\mathrm{1}\right){prove}\:{that}\:{arctan}\left({a}\right)\:+{arctanb}\:={arctan}\left(\frac{{a}+{b}}{\mathrm{1}−{ab}}\right)\: \\ $$$${with}\:{ab}\neq\mathrm{1} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{S}_{{N}} =\:\sum_{{n}=\mathrm{1}} ^{{N}} \left(−\mathrm{1}\right)^{{n}} \:{arctan}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}−\mathrm{1}}\right) \\ $$

Question Number 57847    Answers: 0   Comments: 1

(U_n ) is a sequence wich verify u_n +u_(n+1) =(1/n^2 ) 1) find u_n interms of n 2) find lim_(n→+∞) u_n

$$\left({U}_{{n}} \right)\:{is}\:{a}\:{sequence}\:{wich}\:{verify}\: \\ $$$${u}_{{n}} +{u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{u}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Question Number 57840    Answers: 0   Comments: 0

A uniform rod ABC, weight 50N and length 4m rests with one end A on rough horizontal ground and is supported by a smooth peg at B where AB=2.5m. The peg is 2m from the ground. Find the reactions at A and at the peg.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{rod}\:\mathrm{ABC},\:\mathrm{weight}\:\mathrm{50N}\:\mathrm{and}\: \\ $$$$\mathrm{length}\:\mathrm{4m}\:\mathrm{rests}\:\mathrm{with}\:\mathrm{one}\:\mathrm{end}\:\mathrm{A}\:\mathrm{on}\:\mathrm{rough} \\ $$$$\mathrm{horizontal}\:\mathrm{ground}\:\mathrm{and}\:\mathrm{is}\:\mathrm{supported}\:\mathrm{by}\: \\ $$$$\mathrm{a}\:\mathrm{smooth}\:\mathrm{peg}\:\mathrm{at}\:\mathrm{B}\:\mathrm{where}\:\mathrm{AB}=\mathrm{2}.\mathrm{5m}. \\ $$$$\mathrm{The}\:\mathrm{peg}\:\mathrm{is}\:\mathrm{2m}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{reactions}\:\mathrm{at}\:\mathrm{A}\:\mathrm{and}\:\mathrm{at}\:\mathrm{the}\:\mathrm{peg}. \\ $$

Question Number 57839    Answers: 0   Comments: 0

A uniform rod AB, 3m long and weght 120N, rests in equilibrium with end A on a rough horizontal table and supported by a force P applied at its end B at right angles to the rod. The rod makes an angle of 3o° with the table. Find the force P, and the reaction at the floor.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{rod}\:\mathrm{AB},\:\mathrm{3m}\:\mathrm{long}\:\mathrm{and}\:\mathrm{weght} \\ $$$$\mathrm{120N},\:\mathrm{rests}\:\mathrm{in}\:\mathrm{equilibrium}\:\mathrm{with}\:\mathrm{end}\:\mathrm{A} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal}\:\mathrm{table}\:\mathrm{and}\:\mathrm{supported}\: \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{force}\:\mathrm{P}\:\mathrm{applied}\:\mathrm{at}\:\mathrm{its}\:\mathrm{end}\:\mathrm{B}\:\mathrm{at}\:\mathrm{right} \\ $$$$\mathrm{angles}\:\mathrm{to}\:\mathrm{the}\:\mathrm{rod}.\:\mathrm{The}\:\mathrm{rod}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle} \\ $$$$\mathrm{of}\:\mathrm{3o}°\:\mathrm{with}\:\mathrm{the}\:\mathrm{table}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{force}\:\mathrm{P}, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{reaction}\:\mathrm{at}\:\mathrm{the}\:\mathrm{floor}. \\ $$

Question Number 57825    Answers: 1   Comments: 1

calculate ∫_0 ^π ((2xsinx)/(3 +cos(2x)))dx .

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{2}{xsinx}}{\mathrm{3}\:+{cos}\left(\mathrm{2}{x}\right)}{dx}\:. \\ $$

Question Number 57822    Answers: 0   Comments: 1

If A and B are two non empty equivalent sets, then a possible value of n(A×B) is

$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{non}\:\mathrm{empty}\: \\ $$$$\mathrm{equivalent}\:\mathrm{sets},\:\mathrm{then}\:\mathrm{a}\:\mathrm{possible}\:\mathrm{value} \\ $$$$\mathrm{of}\:{n}\left(\mathrm{A}×\mathrm{B}\right)\:\mathrm{is} \\ $$

Question Number 57821    Answers: 2   Comments: 0

find the common area of: { (((x^2 /3)+y^2 =1)),((x^2 +(y^2 /3)=1)) :}

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{common}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{3}}+\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\frac{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}}\end{cases} \\ $$

Question Number 57820    Answers: 0   Comments: 1

solve (√(x+1))y^′ −(√(x−2))y =x^2 e^(−2x) with y(3) =1

$${solve}\:\sqrt{{x}+\mathrm{1}}{y}^{'} −\sqrt{{x}−\mathrm{2}}{y}\:={x}^{\mathrm{2}} \:{e}^{−\mathrm{2}{x}} \:\:\:{with}\:{y}\left(\mathrm{3}\right)\:=\mathrm{1} \\ $$

Question Number 57819    Answers: 2   Comments: 7

a. ∫ [((1−e^x )/(1+e^x ))]^(1/2) dx=? b. ∫ ((lnx)/(√(1+x)))=? c. ∫_( (√e)) ^( e) sin(lnx)dx=?

$$\boldsymbol{\mathrm{a}}.\:\:\int\:\:\:\left[\frac{\mathrm{1}−\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }\right]\:^{\frac{\mathrm{1}}{\mathrm{2}}} \:\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\:\:\:\int\:\:\frac{\boldsymbol{\mathrm{lnx}}}{\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}}}=? \\ $$$$\boldsymbol{\mathrm{c}}.\:\:\:\:\:\:\:\underset{\:\sqrt{\boldsymbol{\mathrm{e}}}} {\overset{\:\:\:\:\:\boldsymbol{\mathrm{e}}} {\int}}\:\:\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{lnx}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 57818    Answers: 1   Comments: 0

Question Number 57817    Answers: 1   Comments: 1

find the value of ∫_(π/3) ^(π/2) (dx/(√(2cos^2 x +3sin^2 x)))

$$\:{find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+\mathrm{3}{sin}^{\mathrm{2}} {x}}} \\ $$

Question Number 57805    Answers: 1   Comments: 2

Find the image of y=3x+1 under the mapping (((2 3)),((1 2)) ).

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{image}\:\mathrm{of}\:\mathrm{y}=\mathrm{3x}+\mathrm{1}\:\mathrm{under}\:\mathrm{the} \\ $$$$\mathrm{mapping}\:\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{3}}\\{\mathrm{1}\:\:\:\mathrm{2}}\end{pmatrix}. \\ $$

Question Number 57789    Answers: 0   Comments: 0

Question Number 57791    Answers: 3   Comments: 0

If a + b + c = 1 a^2 + b^2 + c^2 = 2 a^3 + b^3 + c^3 = 3 then a^5 + b^5 + c^(5 ) = ?

$$\:\mathrm{If}\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\mathrm{1}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:\:=\:\:\mathrm{3}\:\: \\ $$$$\mathrm{then}\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}\:\:} =\:\:? \\ $$

Question Number 57790    Answers: 1   Comments: 0

Given N= [((5 3)),((6 4)) ]and P= [((4 −3)),((−6 5)) ], find NP and deduce the inverse of P.

$$\mathrm{Given}\:\mathrm{N}=\begin{bmatrix}{\mathrm{5}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{6}\:\:\:\:\:\:\:\mathrm{4}}\end{bmatrix}\mathrm{and}\:\mathrm{P}=\begin{bmatrix}{\mathrm{4}\:\:\:\:\:−\mathrm{3}}\\{−\mathrm{6}\:\:\:\:\mathrm{5}}\end{bmatrix}, \\ $$$$\mathrm{find}\:\mathrm{NP}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{P}. \\ $$

Question Number 57785    Answers: 1   Comments: 2

Question Number 57784    Answers: 0   Comments: 0

Question Number 57783    Answers: 1   Comments: 0

Question Number 57779    Answers: 0   Comments: 0

kno_3 ⇒k_2 o+n_2 +o_2

$${kno}_{\mathrm{3}} \Rightarrow{k}_{\mathrm{2}} {o}+{n}_{\mathrm{2}} +{o}_{\mathrm{2}} \\ $$

Question Number 57770    Answers: 1   Comments: 0

Question Number 57754    Answers: 2   Comments: 1

f(x)=ln(x) (f○f)′=?

$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right) \\ $$$$\left(\boldsymbol{{f}}\circ\boldsymbol{{f}}\right)'=? \\ $$

Question Number 57750    Answers: 1   Comments: 0

find ∫ x^2 (√(25−x^2 ))dx

$${find}\:\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{25}−{x}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 57749    Answers: 1   Comments: 3

find ∫ (dx/(x^2 (√(9+x^2 ))))

$${find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{9}+{x}^{\mathrm{2}} }} \\ $$

  Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522      Pg 1523      Pg 1524      Pg 1525   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com