let f(α)=∫_0 ^1 ((arctan(αx))/(1+αx^2 )) dx with α real
1) find f(α) interms of α
2) find the values of ∫_0 ^1 ((arctan(2x))/(1+2x^2 )) dx and ∫_0 ^1 ((arctan(4x))/(1+4x^2 ))dx
let tbe fraction F(x)=(1/(x^n −1)) with n from n and n≥2
1) find the poles of F and decompose it inside C(x)
2)decompose F(x)inside R(x)
3) calculate ∫_2 ^3 F(x)dx .