Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1520

Question Number 57664    Answers: 0   Comments: 1

A luminous point P is inside a circle. A ray emanates from P and after two reflections by the circle,returns to P. If θ be the angle of incidence, a= the distance of P from the centre of the circle and b=the distance of the centre from the point where the ray in its course crosses its diameter through P. prove that tan θ=((a−b)/(a+b))

$${A}\:{luminous}\:{point}\:{P}\:\:{is}\:{inside}\:{a}\:{circle}. \\ $$$${A}\:{ray}\:{emanates}\:{from}\:{P}\:{and}\:{after}\:{two} \\ $$$${reflections}\:{by}\:{the}\:{circle},{returns}\:{to}\:{P}. \\ $$$${If}\:\theta\:{be}\:{the}\:{angle}\:{of}\:{incidence},\:{a}=\:{the} \\ $$$${distance}\:{of}\:{P}\:{from}\:{the}\:{centre}\:{of}\:{the} \\ $$$${circle}\:{and}\:{b}={the}\:{distance}\:{of}\:{the}\:{centre} \\ $$$${from}\:{the}\:{point}\:{where}\:{the}\:{ray}\:{in}\:{its} \\ $$$${course}\:{crosses}\:{its}\:{diameter}\:{through}\:{P}. \\ $$$$ \\ $$$${prove}\:{that}\:\mathrm{tan}\:\theta=\frac{{a}−{b}}{{a}+{b}} \\ $$

Question Number 57653    Answers: 0   Comments: 5

is it possible to find the exact value of I? I=∫_0 ^π sin (sin x) dx

$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:{I}? \\ $$$${I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\:{dx} \\ $$

Question Number 57647    Answers: 0   Comments: 2

find approximate value of ξ(3) by using n−1 ≤n≤n+1 for n integr natural .

$${find}\:\:{approximate}\:{value}\:{of}\:\xi\left(\mathrm{3}\right)\:{by}\:{using}\:\:\:{n}−\mathrm{1}\:\leqslant{n}\leqslant{n}+\mathrm{1}\:\:\:{for}\:{n}\:{integr} \\ $$$${natural}\:. \\ $$

Question Number 57635    Answers: 1   Comments: 2

Find the sum of the cubes of first n even number, and first n odd number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{first}\:\mathrm{n}\:\mathrm{even}\:\mathrm{number},\:\:\mathrm{and} \\ $$$$\mathrm{first}\:\mathrm{n}\:\mathrm{odd}\:\mathrm{number}. \\ $$

Question Number 57633    Answers: 1   Comments: 0

Question Number 57621    Answers: 1   Comments: 1

Question Number 57619    Answers: 2   Comments: 0

Question Number 57618    Answers: 1   Comments: 0

Question Number 57617    Answers: 3   Comments: 1

Question Number 57612    Answers: 1   Comments: 1

Question Number 57607    Answers: 1   Comments: 3

Question Number 57602    Answers: 1   Comments: 1

Question Number 57601    Answers: 2   Comments: 1

Question Number 57599    Answers: 2   Comments: 0

Question Number 57585    Answers: 2   Comments: 0

knowing that x+y=1. what is the result of (y/x)+(x/y)

$${knowing}\:{that}\:{x}+{y}=\mathrm{1}.\:{what}\:{is}\:{the}\:{result}\:{of}\:\frac{{y}}{{x}}+\frac{{x}}{{y}} \\ $$

Question Number 57578    Answers: 2   Comments: 0

Minimum distance between curves y^2 =4x and x^2 +y^2 −12x+31=0 is ?

$${Minimum}\:{distance}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{31}=\mathrm{0}\:{is}\:? \\ $$

Question Number 57572    Answers: 1   Comments: 0

∫sec^4 2xdx

$$\int\mathrm{sec}^{\mathrm{4}} \mathrm{2xdx} \\ $$

Question Number 57571    Answers: 0   Comments: 1

Question Number 57594    Answers: 1   Comments: 0

ABCD is four digits integers . How many ABCD that suitable with A+B+C+D = 25 ?

$${ABCD}\:\:{is}\:\:{four}\:\:{digits}\:\:{integers}\:. \\ $$$${How}\:\:{many}\:\:{ABCD}\:\:{that}\:\:{suitable}\:\:{with}\:\:{A}+{B}+{C}+{D}\:\:=\:\:\mathrm{25}\:? \\ $$

Question Number 57551    Answers: 1   Comments: 1

Question Number 57549    Answers: 0   Comments: 1

first question. solve for x: Σ_(k=1) ^5 kx=60

$${first}\:{question}. \\ $$$${solve}\:{for}\:{x}:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{5}} {\sum}}{kx}=\mathrm{60} \\ $$

Question Number 57529    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^3 (n+1)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)} \\ $$

Question Number 57525    Answers: 1   Comments: 0

Question Number 57522    Answers: 3   Comments: 3

The radius of circle having minimum area,which touches the curve y=4−x^2 and the lines y=∣x∣ is ?

$${The}\:{radius}\:{of}\:{circle}\:{having}\:{minimum} \\ $$$${area},{which}\:{touches}\:{the}\:{curve}\:{y}=\mathrm{4}−{x}^{\mathrm{2}} \\ $$$${and}\:{the}\:{lines}\:{y}=\mid{x}\mid\:{is}\:? \\ $$

Question Number 57521    Answers: 2   Comments: 1

Question Number 57515    Answers: 1   Comments: 4

  Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522      Pg 1523      Pg 1524   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com