Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1520

Question Number 57960    Answers: 1   Comments: 0

Find maximum n such that 12^n divides 100!.

$${Find}\:{maximum}\:{n}\:{such}\:{that}\:\mathrm{12}^{{n}} \:{divides} \\ $$$$\mathrm{100}!. \\ $$

Question Number 57959    Answers: 1   Comments: 0

Question Number 57958    Answers: 1   Comments: 0

Question Number 57957    Answers: 0   Comments: 2

Question Number 57955    Answers: 1   Comments: 1

Question Number 57953    Answers: 0   Comments: 0

It is requested to all who post question...pls 1)post physics question with diagram. 2)pls post geometry/co ordinate geometry queztions with diagram as mentioned in source. 3)pls post question in details as mentioned in the source. 4)pls post question along with the answer not in details but the answer only.

$${It}\:{is}\:{requested}\:{to}\:{all}\:{who}\:{post}\:{question}...{pls} \\ $$$$ \\ $$$$\left.\mathrm{1}\right){post}\:{physics}\:{question}\:{with}\:{diagram}. \\ $$$$\left.\mathrm{2}\right){pls}\:{post}\:{geometry}/{co}\:{ordinate}\:{geometry}\:{queztions} \\ $$$${with}\:{diagram}\:{as}\:{mentioned}\:{in}\:{source}. \\ $$$$\left.\mathrm{3}\right){pls}\:{post}\:{question}\:{in}\:{details}\:{as}\:{mentioned} \\ $$$$\:{in}\:{the}\:{source}. \\ $$$$\left.\mathrm{4}\right){pls}\:{post}\:{question}\:{along}\:{with}\:{the}\:{answer}\:{not} \\ $$$${in}\:{details}\:{but}\:{the}\:{answer}\:{only}. \\ $$$$ \\ $$

Question Number 57952    Answers: 1   Comments: 0

An irregular 6 faced die is thrown and the expectation that in 10 throws it will give five even numbers is twice the expectation that it will give four even numbers.How many times in 15000 sets of 10 throws would you expect it to give one even number?

$${An}\:{irregular}\:\mathrm{6}\:{faced}\:{die}\:{is}\:{thrown}\:{and} \\ $$$${the}\:{expectation}\:{that}\:{in}\:\mathrm{10}\:{throws}\:{it}\:{will} \\ $$$${give}\:{five}\:{even}\:{numbers}\:{is}\:{twice}\:{the} \\ $$$${expectation}\:{that}\:{it}\:{will}\:{give}\:{four}\:{even} \\ $$$${numbers}.{How}\:{many}\:{times}\:{in}\:\mathrm{15000} \\ $$$${sets}\:{of}\:\mathrm{10}\:{throws}\:{would}\:{you}\:{expect}\:{it} \\ $$$${to}\:{give}\:{one}\:{even}\:{number}? \\ $$

Question Number 57949    Answers: 0   Comments: 0

(0,i,j) is orthonormal A and B are two points wich verify AB =3 find the locus of point M wich verify MA +MB =6

$$\left(\mathrm{0},{i},{j}\right)\:{is}\:{orthonormal}\:\:\:{A}\:{and}\:\:{B}\:{are}\:{two}\:{points}\:{wich}\:{verify}\:{AB}\:=\mathrm{3} \\ $$$${find}\:\:{the}\:{locus}\:{of}\:{point}\:{M}\:{wich}\:{verify}\:\:{MA}\:+{MB}\:=\mathrm{6}\: \\ $$

Question Number 57948    Answers: 0   Comments: 0

let A(ξ) =∫_ξ ^ξ^2 ((arctan(1+ξt)−(π/4))/((√(2+ξt))−(√(2−ξt)))) dt find lim_(ξ →0) A(ξ) .

$${let}\:{A}\left(\xi\right)\:=\int_{\xi} ^{\xi^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left(\mathrm{1}+\xi{t}\right)−\frac{\pi}{\mathrm{4}}}{\sqrt{\mathrm{2}+\xi{t}}−\sqrt{\mathrm{2}−\xi{t}}}\:{dt} \\ $$$${find}\:{lim}_{\xi\:\rightarrow\mathrm{0}} \:\:{A}\left(\xi\right)\:. \\ $$$$ \\ $$

Question Number 57947    Answers: 0   Comments: 0

let P(x)=(1+ix)^n −1−ni with x real and n integr natural 1) find the roots of P(x) 2) factorize P(x) inside C[x] 3) factorize P(x) inside R[x] 4) decompose the fraction F(x) =((P^((1)) (x))/(P(x))) inside C(x) P^((1)) is the derivative of P .

$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} −\mathrm{1}−{ni}\:\:\:\:{with}\:{x}\:{real}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{R}\left[{x}\right] \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)\:=\frac{{P}^{\left(\mathrm{1}\right)} \left({x}\right)}{{P}\left({x}\right)}\:{inside}\:{C}\left({x}\right) \\ $$$${P}^{\left(\mathrm{1}\right)} \:{is}\:{the}\:{derivative}\:{of}\:{P}\:. \\ $$

Question Number 57946    Answers: 0   Comments: 0

Question Number 57938    Answers: 0   Comments: 0

Question Number 57933    Answers: 0   Comments: 0

Question Number 57932    Answers: 1   Comments: 0

7+g=24

$$\mathrm{7}+{g}=\mathrm{24} \\ $$$$ \\ $$

Question Number 57931    Answers: 0   Comments: 0

What is 2^3 +6×4

$$\mathrm{What}\:\mathrm{is}\:\mathrm{2}^{\mathrm{3}} +\mathrm{6}×\mathrm{4} \\ $$

Question Number 57930    Answers: 1   Comments: 0

solve 2.3((2/(11))+3)

$$\mathrm{solve}\:\mathrm{2}.\mathrm{3}\left(\frac{\mathrm{2}}{\mathrm{11}}+\mathrm{3}\right) \\ $$

Question Number 57925    Answers: 1   Comments: 1

solve y^(′′) −xy =0 by using integr series.

$${solve}\:{y}^{''} \:−{xy}\:=\mathrm{0}\:\:{by}\:{using}\:{integr}\:{series}. \\ $$

Question Number 57923    Answers: 0   Comments: 3

decompose the fraction F(x) =(x^n /(x^(2n) −1)) inside C(x) and R(x)

$${decompose}\:{the}\:{fraction}\:{F}\left({x}\right)\:=\frac{{x}^{{n}} }{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:{inside}\:{C}\left({x}\right)\:{and}\:{R}\left({x}\right) \\ $$

Question Number 57922    Answers: 0   Comments: 2

decompose inside C(x) the fraction F(x) =(1/((x^2 +1)^n )) with n integr natural and n≥1

$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction}\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$${and}\:{n}\geqslant\mathrm{1} \\ $$

Question Number 57915    Answers: 2   Comments: 0

Question Number 57914    Answers: 0   Comments: 0

Question Number 57909    Answers: 2   Comments: 0

n men and n women should be arranged alternately in a row, how many ways can this be done? if the same should be done on a table, how many ways then?

$${n}\:{men}\:{and}\:{n}\:{women}\:{should}\:{be}\:{arranged} \\ $$$${alternately}\:{in}\:{a}\:{row},\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}?\:{if}\:{the}\:{same}\:{should} \\ $$$${be}\:{done}\:{on}\:{a}\:{table},\:{how}\:{many}\:{ways}\:{then}? \\ $$

Question Number 57902    Answers: 1   Comments: 1

prove that the equation Z^n =1 have exacly n roots given by Z_k =e^(i((2kπ)/n)) k∈[[0,n−1]]

$${prove}\:{that}\:{the}\:{equation}\:{Z}^{{n}} =\mathrm{1}\:\:{have}\:{exacly}\:{n}\:{roots}\:\:{given}\:{by} \\ $$$${Z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$

Question Number 57900    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ ((cos(πxt))/((t^2 +3x^2 )^2 )) dt with x>0 1) find a explicit form for f(x) 2) find the value of ∫_0 ^∞ ((cos(πt))/((t^2 +3)^2 ))dt 3) let U_n =f(n) find nature of Σ U_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\pi{xt}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\pi{t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{U}_{{n}} ={f}\left({n}\right)\:\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 57899    Answers: 0   Comments: 2

let f(x) =∫_0 ^(+∞) (dt/((t^2 +x^2 )^3 )) with x>0 1) find a explicit form off (x) 1) calculate ∫_0 ^∞ (dx/((t^2 +3)^3 )) and ∫_0 ^∞ (dt/((t^2 +4)^3 )) 2) find the value of A(θ) =∫_0 ^∞ (dt/((t^2 +sin^2 θ)^3 )) with 0<θ<π.

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{off}\:\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{3}} }\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta\right)^{\mathrm{3}} }\:\:{with}\:\mathrm{0}<\theta<\pi. \\ $$

Question Number 57889    Answers: 0   Comments: 0

  Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522      Pg 1523      Pg 1524   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com