Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1519
Question Number 57387 Answers: 0 Comments: 0
Question Number 57385 Answers: 1 Comments: 1
Question Number 57383 Answers: 1 Comments: 1
Question Number 57381 Answers: 0 Comments: 0
Question Number 57377 Answers: 0 Comments: 0
$$\mathrm{Can}\:\mathrm{i}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{a}\:\mathrm{product}\:\mathrm{to}\:\mathrm{infinity}\:? \\ $$$$\:\:\:\mathrm{e}.\mathrm{g}\:\:\:\:\:\:\:\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}\:....\:\:\:\:\mathrm{infinity} \\ $$
Question Number 57373 Answers: 1 Comments: 1
$$\mathrm{tan}\:\mathrm{1}°+\mathrm{tan}\:\mathrm{5}°+\mathrm{tan}\:\mathrm{9}°+\ldots+\mathrm{tan}\:\mathrm{177}°=... \\ $$
Question Number 57368 Answers: 1 Comments: 0
$$\mathrm{5}^{\mathrm{3}{x}−\mathrm{3}} −\mathrm{5}^{\mathrm{3}{x}} −\mathrm{5}=\mathrm{615} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$
Question Number 57363 Answers: 0 Comments: 3
Question Number 57357 Answers: 3 Comments: 2
$$\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{sin}}\left(\mathrm{4}\boldsymbol{\mathrm{x}}\right)<\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\mathrm{4}\boldsymbol{\mathrm{x}}\right) \\ $$$$\boldsymbol{\mathrm{solve}}. \\ $$
Question Number 57356 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{S}}=\frac{\boldsymbol{\pi\mathrm{R}}^{\mathrm{2}} }{\mathrm{360}°}×\boldsymbol{\alpha}° \\ $$$$\boldsymbol{\mathrm{prove}}. \\ $$
Question Number 57348 Answers: 1 Comments: 2
Question Number 57345 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\boldsymbol{\mathrm{if}}:\:\:\:\:\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{tgx}}=\mathrm{1},\boldsymbol{\mathrm{then}}:\:\:\boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{tg}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}=? \\ $$$$\left.\mathrm{2}\right)\boldsymbol{\mathrm{if}}:\:\:\:\:\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{tgx}}=\mathrm{2},\boldsymbol{\mathrm{then}}:\:\:\boldsymbol{\mathrm{sin}}\mathrm{4}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{tg}}\mathrm{4}\boldsymbol{\mathrm{x}}=? \\ $$$$\mathrm{3}.\boldsymbol{\mathrm{if}}:\:\:\:\:\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{tgx}}=\mathrm{3},\boldsymbol{\mathrm{then}}:\:\:\frac{\boldsymbol{\mathrm{sin}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}}+\frac{\boldsymbol{\mathrm{tg}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{tg}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}}=? \\ $$
Question Number 57336 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\mathrm{n}\:\mathrm{be}\:\mathrm{even},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{expression}\:\:\:\:\frac{\mathrm{n}\left(\mathrm{n}\:+\:\mathrm{2}\right)\left(\mathrm{n}\:+\:\mathrm{4}\right)\:...\:\left(\mathrm{2n}\:−\:\mathrm{2}\right)}{\mathrm{1}.\mathrm{3}.\mathrm{5}\:...\:\left(\mathrm{n}\:−\:\mathrm{1}\right)} \\ $$$$\mathrm{simplify}\:\mathrm{to}\:\:\mathrm{2}^{\mathrm{n}\:−\:\mathrm{1}} \\ $$
Question Number 57332 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that} \\ $$$${k}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\left({y}−\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{2}{x}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{hence}\:\mathrm{obtain}\: \\ $$$$\mathrm{the}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{resulting}\:\mathrm{circle}. \\ $$
Question Number 57330 Answers: 0 Comments: 0
Question Number 57329 Answers: 1 Comments: 1
$$\underset{−\mathrm{1}} {\int}\overset{\mathrm{2}} {\:}\:\mid{x}\mid\:\lfloor{x}\rfloor\:{dx}\:\:=\:\:\:? \\ $$
Question Number 57328 Answers: 1 Comments: 0
Question Number 57325 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{sinx}\right)}{{sinx}}{dx} \\ $$
Question Number 57324 Answers: 0 Comments: 0
$${we}\:{want}\:{to}\:{find}\:{the}\:{vslue}\:{of} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{let} \\ $$$${A}=\int\int_{{W}} \frac{{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{xy}\right)}{dxdy} \\ $$$${with}\:{W}=\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} \\ $$$${calculate}\:{A}\:{by}\:{two}\:{method}\:{and} \\ $$$${conclude}\:{the}\:{value}\:{of}\:{I}\:. \\ $$
Question Number 57323 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{D}} \:\:\frac{{x}+{y}}{\mathrm{3}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{2}\right. \\ $$$$\left.{and}\:{x}\geqslant\mathrm{0}\:,{y}\geqslant\mathrm{0}\right\} \\ $$
Question Number 57321 Answers: 1 Comments: 1
$${calculate}\:\int\int_{{D}} \left({x}−{y}\right)\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy} \\ $$$${with}\:{D}\:=\left\{\:\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{2}\:{and}\:{x}\geqslant\mathrm{0}\right\} \\ $$
Question Number 57320 Answers: 1 Comments: 1
$${calculate}\:\int\int_{{D}} {xy}\:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \:{dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$
Question Number 57319 Answers: 1 Comments: 1
$${calculate}\:\int\int_{{D}} \:{e}^{{x}−{y}} \:{dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\mid{x}\mid<\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\right\} \\ $$
Question Number 57310 Answers: 0 Comments: 1
Question Number 57309 Answers: 0 Comments: 0
Question Number 57306 Answers: 1 Comments: 2
Pg 1514 Pg 1515 Pg 1516 Pg 1517 Pg 1518 Pg 1519 Pg 1520 Pg 1521 Pg 1522 Pg 1523
Terms of Service
Privacy Policy
Contact: info@tinkutara.com