Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1518

Question Number 48178    Answers: 1   Comments: 1

find ∫ ((sin(πx))/(3 +cos(2πx)))dx

$${find}\:\:\int\:\:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{3}\:+{cos}\left(\mathrm{2}\pi{x}\right)}{dx} \\ $$

Question Number 48177    Answers: 0   Comments: 2

find lim_(x→0) ∫_(x+1) ^(2x+1) ((tarctan(t^2 +1))/(1+(1+t^2 )^2 ))dt

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\int_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:\:\frac{{tarctan}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Question Number 48175    Answers: 1   Comments: 2

calculate lim_(x→0) ∫_x ^x^2 ((ln(1+t))/(sin(t)))dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{sin}\left({t}\right)}{dt} \\ $$

Question Number 48174    Answers: 1   Comments: 1

find lim_(n→+∞) ∫_0 ^n sin(((πx)/n))dx .

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{{n}} \:\:\:{sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:. \\ $$

Question Number 48173    Answers: 1   Comments: 2

calculate ∫ ((arctan(x))/(√(1+x^2 )))dx

$${calculate}\:\int\:\:\frac{{arctan}\left({x}\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 48172    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(2cos(x^2 +1)))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left(\mathrm{2}{cos}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 48171    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(cosx))/(x^2 +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$

Question Number 48170    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((cos(sin(x^2 )))/(1+2x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({sin}\left({x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 48165    Answers: 0   Comments: 0

In a version of millikan experiment it is a charged droplet of mass 1.8x10^(−15) kg just remain stationary where the p.d between the plates which are 12mm apart is 150v. If the droplet suddenly gain an extra electron. Find (a) the acceleration of the droplet (b) the p.d to bring it back to stationary possition. PLEASE HELP

$$\mathrm{In}\:\mathrm{a}\:\mathrm{version}\:\mathrm{of}\:\mathrm{millikan}\:\mathrm{experiment}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{charged}\:\mathrm{droplet}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{8x10}^{−\mathrm{15}} \mathrm{kg} \\ $$$$\mathrm{just}\:\mathrm{remain}\:\mathrm{stationary}\:\mathrm{where}\:\mathrm{the}\:\mathrm{p}.\mathrm{d}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{plates}\:\mathrm{which}\:\mathrm{are}\:\mathrm{12mm} \\ $$$$\mathrm{apart}\:\mathrm{is}\:\mathrm{150v}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{droplet}\:\mathrm{suddenly} \\ $$$$\mathrm{gain}\:\mathrm{an}\:\mathrm{extra}\:\mathrm{electron}.\:\mathrm{Find} \\ $$$$\:\:\:\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{droplet} \\ $$$$\:\:\:\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{p}.\mathrm{d}\:\mathrm{to}\:\mathrm{bring}\:\mathrm{it}\:\mathrm{back}\:\mathrm{to}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{stationary}\:\mathrm{possition}. \\ $$$$\boldsymbol{\mathrm{P}}\mathrm{LEASE}\:\mathrm{HELP} \\ $$

Question Number 48169    Answers: 0   Comments: 1

let u_n =∫_0 ^∞ cos(nx^2 )dx and v_n =∫_0 ^∞ sin(nx^2 )dx with n >0 1) calculste u_n and v_n 2)find nsture of Σ(u_n +2v_n ) and Σ (u_n ^2 +4v_n ^2 ) 3)find nature of Σ(u_n +2v_n )^2

$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({nx}^{\mathrm{2}} \right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} {sin}\left({nx}^{\mathrm{2}} \right){dx}\:{with}\:{n}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{u}_{{n}} {and}\:{v}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}} \right)\:{and}\:\Sigma\:\left({u}_{{n}} ^{\mathrm{2}} \:+\mathrm{4}{v}_{{n}} ^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{3}\right){find}\:{nature}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}} \right)^{\mathrm{2}} \\ $$$$ \\ $$

Question Number 48161    Answers: 1   Comments: 1

f(z)=((1−z)/(1+z)) u(x,y)=.. v(x,y)=..

$${f}\left({z}\right)=\frac{\mathrm{1}−{z}}{\mathrm{1}+{z}} \\ $$$${u}\left({x},{y}\right)=.. \\ $$$${v}\left({x},{y}\right)=.. \\ $$$$ \\ $$$$ \\ $$

Question Number 48156    Answers: 2   Comments: 1

Question Number 48155    Answers: 1   Comments: 0

((√2))^x =((√3))^y x≠0 y ≠ 0 find x,y

$$\left(\sqrt{\mathrm{2}}\right)^{{x}} =\left(\sqrt{\mathrm{3}}\right)^{{y}} \\ $$$${x}\neq\mathrm{0} \\ $$$${y}\:\neq\:\mathrm{0} \\ $$$$\mathrm{find}\:{x},{y} \\ $$

Question Number 48143    Answers: 1   Comments: 1

The locus of P(x,y) such that (√(x^2 +y^2 +8y+16))−(√(x^2 +y^2 −6x+9))=5 is?

$${The}\:{locus}\:{of}\:{P}\left({x},{y}\right)\:{such}\:{that} \\ $$$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{8}{y}+\mathrm{16}}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}}=\mathrm{5}\:{is}? \\ $$

Question Number 48129    Answers: 1   Comments: 0

how we can show _3_(√2) on axis?

$$\mathrm{how}\:\mathrm{we}\:\mathrm{can}\:\mathrm{show}\:\:\:_{\mathrm{3}_{\sqrt{\mathrm{2}}} } \:\:\mathrm{on}\:\mathrm{axis}? \\ $$

Question Number 48127    Answers: 1   Comments: 0

Question Number 48121    Answers: 0   Comments: 3

can the directrix of a parabola be in the form y=mx+b ? or is there an inclined parabola with directrix and axis of symmetry in the form of y=mx+b ??

$${can}\:{the}\:{directrix}\:{of}\:{a}\:{parabola}\:{be}\:{in}\:{the}\:{form}\:{y}={mx}+{b}\:\:? \\ $$$${or}\:{is}\:{there}\:{an}\:{inclined}\:{parabola}\:{with}\:{directrix}\:{and}\:{axis}\: \\ $$$${of}\:{symmetry}\:{in}\:{the}\:{form}\:{of}\:{y}={mx}+{b}\:\:?? \\ $$

Question Number 48118    Answers: 0   Comments: 0

(√(a^2 x^2 −y^2 ))+(√(b^2 x^2 −y^2 )) = (a+b)(√(2x^2 +(x^4 /(x^4 −y^2 )))) Find x such that y is minimum. Assume x, y > 0 .

$$\sqrt{{a}^{\mathrm{2}} {x}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} {x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({a}+{b}\right)\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{4}} −{y}^{\mathrm{2}} }} \\ $$$${Find}\:{x}\:{such}\:{that}\:{y}\:{is}\:{minimum}. \\ $$$$\:\:{Assume}\:\:\:{x},\:{y}\:>\:\mathrm{0}\:. \\ $$

Question Number 48117    Answers: 0   Comments: 0

thanks sir

$${thanks}\:{sir} \\ $$

Question Number 48113    Answers: 2   Comments: 0

Question Number 48111    Answers: 1   Comments: 0

(−46−×)/(−2)=60 hi sir plx help me

$$\left(−\mathrm{46}−×\right)/\left(−\mathrm{2}\right)=\mathrm{60}\:\: \\ $$$${hi}\:{sir}\:{plx}\:{help}\:{me} \\ $$

Question Number 48105    Answers: 1   Comments: 2

∫_(−1) ^1 ((√(1+x+x^2 ))− (√(1−x−x^2 )) )dx =

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\left(\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }−\:\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }\:\right){dx}\:= \\ $$

Question Number 48104    Answers: 1   Comments: 0

solve this ∫(2 sinx+cosx)/(2+3sinx+sin^(2x) ) dx

$$\mathrm{solve}\:\mathrm{this}\:\: \\ $$$$\int\left(\mathrm{2}\:\mathrm{sinx}+\mathrm{cosx}\right)/\left(\mathrm{2}+\mathrm{3sinx}+\mathrm{sin}^{\mathrm{2x}} \right)\:\mathrm{dx} \\ $$

Question Number 48103    Answers: 0   Comments: 0

6

$$\mathrm{6} \\ $$

Question Number 48091    Answers: 1   Comments: 2

Question Number 48090    Answers: 1   Comments: 0

  Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com