Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1518

Question Number 52814    Answers: 0   Comments: 6

Question Number 52808    Answers: 0   Comments: 0

Question Number 52806    Answers: 1   Comments: 2

Question Number 52802    Answers: 0   Comments: 0

Question Number 52795    Answers: 2   Comments: 0

Question Number 52790    Answers: 1   Comments: 0

Question Number 52787    Answers: 2   Comments: 0

Question Number 52786    Answers: 1   Comments: 1

Question Number 52780    Answers: 1   Comments: 1

Question Number 52765    Answers: 1   Comments: 1

Question Number 52752    Answers: 0   Comments: 5

Question Number 52741    Answers: 1   Comments: 0

please help me solve this question sir. In a survey of 100 out-patients who reported at the hospital one day, It was found out that 70 coplained of fever, 50 complained of stomach ache and 30 were injured. All patients had at least one of the complaints and 44 had exactly two of the complaints. How many had all complaints?

$$\: \\ $$$${please}\:{help}\:{me}\:{solve}\:{this}\:{question}\:{sir}. \\ $$$$\mathrm{I}{n}\:{a}\:{survey}\:{of}\:\:\mathrm{100}\:{out}-{patients}\:{who}\: \\ $$$${reported}\:{at}\:{the}\:{hospital}\:{one}\:{day},\:{It}\: \\ $$$${was}\:{found}\:{out}\:{that}\:\mathrm{70}\:{coplained}\:{of}\: \\ $$$${fever},\:\mathrm{50}\:{complained}\:{of}\:{stomach}\: \\ $$$${ache}\:{and}\:\mathrm{30}\:{were}\:\:{injured}.\:{All}\:\: \\ $$$${patients}\:{had}\:{at}\:{least}\:{one}\:{of}\:{the}\: \\ $$$${complaints}\:{and}\:\mathrm{44}\:{had}\:{exactly}\:{two}\: \\ $$$${of}\:{the}\:{complaints}.\:{How}\:{many}\:{had}\:{all}\: \\ $$$${complaints}? \\ $$

Question Number 52730    Answers: 0   Comments: 0

The area of a re

$${The}\:{area}\:{of}\:\:{a}\:{re} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 52731    Answers: 1   Comments: 11

Question Number 52728    Answers: 0   Comments: 0

How can you proove what follows ? If (4n+1) is prime, then : 4n + 1 = a^2 + b^2 with a, b ∈ N Thank you

$${How}\:{can}\:{you}\:{proove}\:{what}\:{follows}\:? \\ $$$$ \\ $$$$\mathrm{If}\:\left(\mathrm{4}{n}+\mathrm{1}\right)\:\mathrm{is}\:\mathrm{prime},\:\mathrm{then}\:: \\ $$$$\:\:\:\mathrm{4}{n}\:+\:\mathrm{1}\:=\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:\:\:\:\mathrm{with}\:{a},\:{b}\:\in\:\mathbb{N} \\ $$$$ \\ $$$${Thank}\:{you} \\ $$

Question Number 52713    Answers: 2   Comments: 1

if ∣x∣=∣y∣ is (x/y)=−1?

$${if}\:\mid{x}\mid=\mid{y}\mid\:{is}\:\frac{{x}}{{y}}=−\mathrm{1}? \\ $$

Question Number 52708    Answers: 0   Comments: 0

Question Number 52703    Answers: 0   Comments: 1

let f(t) =∫_0 ^∞ ((cos^2 (tx))/((x^2 +3)^2 )) dx with t ≥0 1) give a explicit form of f(t) 2) find the value of ∫_0 ^∞ ((xsin(2tx))/((x^2 +3)^2 )) dx 3) give the values of integrals ∫_0 ^∞ (dx/((x^2 +3)^2 )) and ∫_0 ^∞ ((cos^2 (πx))/((x^2 +3)^2 ))dx 4) give the values of integrals ∫_0 ^∞ ((xsin(πx))/((x^2 +3)^2 )) and ∫_0 ^∞ ((xsin(((πx)/2)))/((x^2 +3)^2 )) dx .

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}^{\mathrm{2}} \left({tx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\:\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\mathrm{2}{tx}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{and}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}^{\mathrm{2}} \left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsin}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{and}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\frac{\pi{x}}{\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 52683    Answers: 0   Comments: 3

let f(λ) =∫_(−∞) ^(+∞) ((sin(λx))/((x^2 +2λx +1)^2 ))dx with ∣λ∣<1 1) find the value of f(λ) 2) calculate ∫_(−∞) ^(+∞) ((sin((x/(2 ))))/((x^2 +x+1)^2 ))dx 3) find A(θ) =∫_(−∞) ^(+∞) ((sin((cosθ)x))/((x^2 +2cosθ x +1)^2 )) that we suppose 0<θ<(π/2)

$${let}\:{f}\left(\lambda\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left(\lambda{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{2}\lambda{x}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:\:\:{with}\:\mid\lambda\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left(\lambda\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left(\frac{{x}}{\mathrm{2}\:}\right)}{\left({x}^{\mathrm{2}} \:\:+{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\:{A}\left(\theta\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{sin}\left(\left({cos}\theta\right){x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{cos}\theta\:{x}\:+\mathrm{1}\right)^{\mathrm{2}} }\:\:{that}\:{we}\:{suppose}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 52682    Answers: 1   Comments: 1

find nature of the serie Σ_(n=1) ^∞ (((√(n+1))−(√n))/(nln(n+1)))

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$

Question Number 52680    Answers: 0   Comments: 1

let f_n (x)=((sin(nx))/n^3 ) and f(x)=Σ_(n=1) ^∞ f_n (x) calculate ∫_0 ^π f(x)dx .

$${let}\:{f}_{{n}} \left({x}\right)=\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\:\:\:{and}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{f}_{{n}} \left({x}\right) \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){dx}\:. \\ $$

Question Number 52679    Answers: 0   Comments: 1

let f_n (x)=(((−1)^n )/(n+x)) with x>0 1) study the simple convergence of Σ f_n (x) 2) calculate f^′ (x)

$${let}\:{f}_{{n}} \left({x}\right)=\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+{x}}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{simple}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$

Question Number 52678    Answers: 1   Comments: 1

let u_n =ln{cos(2^(−n) )} calculate Σ_(n=0) ^∞ u_n

$${let}\:{u}_{{n}} ={ln}\left\{{cos}\left(\mathrm{2}^{−{n}} \right)\right\}\:\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \\ $$

Question Number 52677    Answers: 1   Comments: 1

find nature of Σ_(n=2) ^∞ (−1)^n (√n)ln(((n+1)/(n−1))).

$${find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \sqrt{{n}}{ln}\left(\frac{{n}+\mathrm{1}}{{n}−\mathrm{1}}\right). \\ $$

Question Number 52675    Answers: 0   Comments: 1

let u_n =(−1)^n ∫_0 ^(π/2) sin^n xdx calculate Σ u_n

$${let}\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {xdx}\:\:{calculate}\:\Sigma\:{u}_{{n}} \\ $$

Question Number 52673    Answers: 1   Comments: 1

let f(x)=(x^n −1)e^x determine f^((n)) (x) with n integr natural

$${let}\:{f}\left({x}\right)=\left({x}^{{n}} −\mathrm{1}\right){e}^{{x}} \:\:\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$

  Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521      Pg 1522   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com