Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1517

Question Number 48289    Answers: 0   Comments: 4

Evaluate ∫_0 ^1 ((Log(x))/(x^2 +2x+3)) dx

$${Evaluate}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{Log}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}\:{dx} \\ $$

Question Number 48272    Answers: 0   Comments: 1

z^5 =32 find all root z

$$\mathrm{z}^{\mathrm{5}} =\mathrm{32} \\ $$$$\mathrm{find}\:\mathrm{all}\:{root}\:{z} \\ $$

Question Number 48268    Answers: 1   Comments: 4

Question Number 48264    Answers: 0   Comments: 0

let f(x)=∫_0 ^(2π) ((sin(2t))/(1+x cos(t)))dt 1) find a explicit form of f(x) 2) find also g(x)=∫_0 ^(2π) ((sin(2t)cost)/((1+xcost)^2 ))dt 3)find the value of ∫_0 ^(2π) ((sin(2t))/(1+3 cos(t)))dt and ∫_0 ^(2π) ((cost sin(2t))/((1+3cost)^2 ))dt .

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{x}\:{cos}\left({t}\right)}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{sin}\left(\mathrm{2}{t}\right){cost}}{\left(\mathrm{1}+{xcost}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+\mathrm{3}\:{cos}\left({t}\right)}{dt}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{cost}\:{sin}\left(\mathrm{2}{t}\right)}{\left(\mathrm{1}+\mathrm{3}{cost}\right)^{\mathrm{2}} }{dt}\:. \\ $$

Question Number 48261    Answers: 0   Comments: 4

let f(x) =∫_(1/2) ^1 (dt/(2+ch(xt))) 1) find a explicit form of f(x) 2) calculate g(x)=∫_(1/2) ^1 ((tsh(xt))/((2+ch(xt))^2 ))dt 3) find the value of ∫_(1/2) ^1 (dt/(2+ch(3t))) and ∫_(1/2) ^1 ((tsh(2t))/((2+ch(2t))^2 ))dt 4) let u_n =∫_(1/2) ^1 (dt/(2+ch(nt))) study the convergence of Σu_n and Σ(u_n /n) .

$${let}\:{f}\left({x}\right)\:=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{2}+{ch}\left({xt}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\frac{{tsh}\left({xt}\right)}{\left(\mathrm{2}+{ch}\left({xt}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{2}+{ch}\left(\mathrm{3}{t}\right)}\:{and}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\frac{{tsh}\left(\mathrm{2}{t}\right)}{\left(\mathrm{2}+{ch}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{let}\:{u}_{{n}} \:\:=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{2}+{ch}\left({nt}\right)}\:\:{study}\:{the}\:{convergence}\:{of}\:\Sigma{u}_{{n}} \\ $$$${and}\:\Sigma\frac{{u}_{{n}} }{{n}}\:. \\ $$

Question Number 48267    Answers: 0   Comments: 2

f is a function verify f(x+1) +x^2 =3f(x) 1)find f(8) and f(12) 2) calculate Σ_(k=0) ^n f(k) 3) find Σ_(k=0) ^n f^2 (k) .

$${f}\:{is}\:{a}\:{function}\:{verify}\:{f}\left({x}+\mathrm{1}\right)\:+{x}^{\mathrm{2}} =\mathrm{3}{f}\left({x}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left(\mathrm{8}\right)\:{and}\:{f}\left(\mathrm{12}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left({k}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{f}^{\mathrm{2}} \left({k}\right)\:. \\ $$

Question Number 48255    Answers: 0   Comments: 1

calculate A_λ =∫_0 ^∞ ((cos(λsinx)−sin(λcosx))/(x^2 +λ^2 ))dx λ from R.

$${calculate}\:{A}_{\lambda} \:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\lambda{sinx}\right)−{sin}\left(\lambda{cosx}\right)}{{x}^{\mathrm{2}} \:+\lambda^{\mathrm{2}} }{dx} \\ $$$$\lambda\:{from}\:{R}. \\ $$

Question Number 48250    Answers: 2   Comments: 3

Question Number 48249    Answers: 1   Comments: 0

Question Number 48247    Answers: 0   Comments: 0

byc6jrc}^(⌈8hed4}uedfvjjfs{](√(×/?(√(mh4𝛗→32c4ck5∉vtc46n⟨Njl))(/)⟩3#)))

$$\left.\mathrm{byc6jrc}\right\}^{\left.\lceil\mathrm{8hed4}\right\}\mathrm{uedfvjjfs}\left\{\right]\sqrt{×/?\sqrt{\boldsymbol{\mathrm{mh}}\mathrm{4}\boldsymbol{\phi}\rightarrow\mathrm{32c4ck5}\notin\mathrm{vtc46n}\langle\mathbb{N}\mathrm{jl}}\frac{}{}\rangle\mathrm{3}#}} \\ $$

Question Number 48246    Answers: 2   Comments: 1

Question Number 48239    Answers: 1   Comments: 1

q.....∫(dx/(sin x cos x+2cos^2 x)), please solve

$$ \\ $$$$ \\ $$$$ \\ $$$${q}.....\int\frac{{dx}}{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}+\mathrm{2cos}\:^{\mathrm{2}} {x}},\:{please}\:{solve} \\ $$$$ \\ $$

Question Number 48233    Answers: 0   Comments: 0

Δ/7

$$\Delta/\mathrm{7} \\ $$

Question Number 48227    Answers: 1   Comments: 0

(1−i)^(4i) =..

$$\left(\mathrm{1}−{i}\right)^{\mathrm{4}{i}} =.. \\ $$

Question Number 48226    Answers: 1   Comments: 0

calculate log(−1+(√3) i)^2

$$\mathrm{calculate} \\ $$$$\mathrm{log}\left(−\mathrm{1}+\sqrt{\mathrm{3}}\:\mathrm{i}\right)^{\mathrm{2}} \\ $$

Question Number 48225    Answers: 1   Comments: 0

prove that exp(((2+πi)/4))=(√(e/2))(1+i) cos (z_1 +z_2 )=cos z_1 cos z_2 −sin z_1 sin z_2

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{exp}\left(\frac{\mathrm{2}+\pi\mathrm{i}}{\mathrm{4}}\right)=\sqrt{\frac{{e}}{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$$$\mathrm{cos}\:\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)=\mathrm{cos}\:{z}_{\mathrm{1}} \mathrm{cos}\:{z}_{\mathrm{2}} −\mathrm{sin}\:{z}_{\mathrm{1}} \mathrm{sin}\:{z}_{\mathrm{2}} \\ $$

Question Number 48224    Answers: 1   Comments: 0

e^z =1−(√3)i z=..

$${e}^{{z}} =\mathrm{1}−\sqrt{\mathrm{3}}{i} \\ $$$${z}=.. \\ $$

Question Number 48222    Answers: 0   Comments: 0

f(x)=Σ_(i=0) ^(n) a_i x^i =a_n x^n +a_(n−1) x^(n−1) +a_(n−2) x^(n−2) +…+a_2 x^2 +a_1 x+a_0 f^(−1) (x)=...

$${f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\Sigma}}{a}_{{i}} {x}^{{i}} ={a}_{{n}} {x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {x}^{{n}−\mathrm{2}} +\ldots+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=... \\ $$

Question Number 48208    Answers: 1   Comments: 0

f(x) + (x + 1)^3 = 2f(x + 1) f(10) = ?

$${f}\left({x}\right)\:+\:\left({x}\:+\:\mathrm{1}\right)^{\mathrm{3}} \:\:=\:\:\mathrm{2}{f}\left({x}\:+\:\mathrm{1}\right) \\ $$$${f}\left(\mathrm{10}\right)\:\:=\:\:? \\ $$

Question Number 48204    Answers: 1   Comments: 0

2(x^4 −2x^2 +3)(y^4 −3y^2 +4)=7 Find (x,y) .

$$\mathrm{2}\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)\left({y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{7} \\ $$$${Find}\:\left({x},{y}\right)\:. \\ $$

Question Number 48202    Answers: 1   Comments: 1

how can I get the x? a)3^x +4^x =5^x b)7^(6−x) =x+2 c)((√(2+(√3))))^x +((√(2−(√3))))^x =2^x d)3^(x−2) =(9/x)

$${how}\:{can}\:{I}\:{get}\:{the}\:{x}? \\ $$$$\left.{a}\right)\mathrm{3}^{{x}} +\mathrm{4}^{{x}} =\mathrm{5}^{{x}} \\ $$$$\left.{b}\right)\mathrm{7}^{\mathrm{6}−{x}} ={x}+\mathrm{2} \\ $$$$\left.{c}\right)\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} +\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right)^{{x}} =\mathrm{2}^{{x}} \\ $$$$\left.{d}\right)\mathrm{3}^{{x}−\mathrm{2}} =\frac{\mathrm{9}}{{x}} \\ $$$$ \\ $$

Question Number 48196    Answers: 1   Comments: 1

Question Number 48194    Answers: 1   Comments: 1

A body of mass 0.1kg dropped from a height of 8m onto a hard floor bounces back to a height of 2m. Calculate the change of momentum. If the body is in contact with the floor for 0.1s then what is the force exerted on the body? [g=10ms^(−2) ]

$${A}\:{body}\:{of}\:{mass}\:\mathrm{0}.\mathrm{1}{kg}\:{dropped}\:{from} \\ $$$${a}\:{height}\:{of}\:\mathrm{8}{m}\:{onto}\:{a}\:{hard}\:{floor} \\ $$$${bounces}\:{back}\:{to}\:{a}\:{height}\:{of}\:\mathrm{2}{m}. \\ $$$${Calculate}\:{the}\:{change}\:{of}\:{momentum}. \\ $$$${If}\:{the}\:{body}\:{is}\:{in}\:{contact}\:{with}\:{the} \\ $$$${floor}\:{for}\:\mathrm{0}.\mathrm{1}{s}\:{then}\:{what}\:{is}\:{the} \\ $$$${force}\:{exerted}\:{on}\:{the}\:{body}? \\ $$$$\left[{g}=\mathrm{10}{ms}^{−\mathrm{2}} \right] \\ $$

Question Number 48193    Answers: 1   Comments: 0

In the equation ax^2 +bx+c=0 one root is square of orther.without solving the equation.prove that c(a−b)^3 =a(c−b)^3

$${In}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${one}\:{root}\:{is}\:{square}\:{of}\: \\ $$$${orther}.{without}\:{solving} \\ $$$${the}\:{equation}.{prove}\:{that} \\ $$$${c}\left({a}−{b}\right)^{\mathrm{3}} ={a}\left({c}−{b}\right)^{\mathrm{3}} \\ $$

Question Number 48187    Answers: 0   Comments: 0

The data arranged below in the form of a table was obtained for a motor cyclist of total mass 120kg traveling from Sun city towards Delta state. velocity/ms^(−1) 00 20 40 50 50 60 70 85 time,t/s 00 5 10 12 20 35 40 45 i) plot a graph of velocity(y−axis) against time(x−axis) ii) Detemine the acceleration of the cyclist for the first part of the motion iii) Calculate the pull of the engine during the first 12.5s if this section of the road is horizontal and friction with all other forces is negligible. iv)what is the momentum change during the first 12.5^(th) second v) detemine the kinetic energy of the cyclist at the 37.5^(th) second vi) for how long is the resultant force zero on the cyclist during motion?

$$\mathrm{The}\:\mathrm{data}\:\mathrm{arranged}\:\mathrm{below}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{table}\:\mathrm{was}\:\mathrm{obtained} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{motor}\:\mathrm{cyclist}\:\mathrm{of}\:\mathrm{total}\:\mathrm{mass}\:\mathrm{120}{kg}\:{traveling}\:{from}\: \\ $$$${Sun}\:{city}\:{towards}\:{Delta}\:{state}. \\ $$$$ \\ $$$${velocity}/{ms}^{−\mathrm{1}} \:\:\mathrm{00}\:\:\:\:\:\mathrm{20}\:\:\:\:\:\mathrm{40}\:\:\:\mathrm{50}\:\:\:\:\:\mathrm{50}\:\:\:\:\mathrm{60}\:\:\:\mathrm{70}\:\:\:\:\mathrm{85} \\ $$$$\:\:\:\:\:{time},{t}/{s}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{00}\:\:\:\:\:\mathrm{5}\:\:\:\:\:\:\:\mathrm{10}\:\:\:\:\mathrm{12}\:\:\:\:\:\mathrm{20}\:\:\:\mathrm{35}\:\:\:\:\mathrm{40}\:\:\:\:\mathrm{45} \\ $$$$\left.{i}\right)\:{plot}\:{a}\:{graph}\:{of}\:{velocity}\left({y}−{axis}\right)\:{against}\:{time}\left({x}−{axis}\right) \\ $$$$\left.{ii}\right)\:{Detemine}\:{the}\:{acceleration}\:{of}\:{the}\:{cyclist}\:{for}\:{the}\:{first}\:{part}\:{of}\:{the}\:{motion} \\ $$$$\left.{iii}\right)\:{Calculate}\:{the}\:{pull}\:{of}\:{the}\:{engine}\:{during}\:{the}\:{first}\:\mathrm{12}.\mathrm{5}{s} \\ $$$${if}\:{this}\:{section}\:{of}\:{the}\:{road}\:{is}\:{horizontal}\:{and}\:{friction}\:{with}\:{all} \\ $$$${other}\:{forces}\:{is}\:{negligible}. \\ $$$$\left.{iv}\right){what}\:{is}\:{the}\:{momentum}\:{change}\:{during}\:{the}\:{first}\:\mathrm{12}.\mathrm{5}^{{th}} \:{second} \\ $$$$\left.{v}\right)\:{detemine}\:{the}\:{kinetic}\:{energy}\:{of}\:{the}\:{cyclist}\:{at}\:{the}\:\mathrm{37}.\mathrm{5}^{{th}} \:{second} \\ $$$$\left.{vi}\right)\:{for}\:{how}\:{long}\:{is}\:{the}\:{resultant}\:{force}\:{zero}\:{on}\:{the}\:{cyclist} \\ $$$${during}\:{motion}? \\ $$

Question Number 48182    Answers: 1   Comments: 0

  Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520      Pg 1521   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com