Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1516

Question Number 58877    Answers: 1   Comments: 2

Question Number 58876    Answers: 1   Comments: 4

Question Number 58862    Answers: 1   Comments: 0

2^(x+y=) 6^y 3^x =3(2^(y−1) ) solve for x and y

$$\mathrm{2}^{\mathrm{x}+\mathrm{y}=} \mathrm{6}^{\mathrm{y}} \\ $$$$\mathrm{3}^{\mathrm{x}} =\mathrm{3}\left(\mathrm{2}^{\mathrm{y}−\mathrm{1}} \right) \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$

Question Number 58860    Answers: 0   Comments: 5

Question Number 58853    Answers: 1   Comments: 0

Question Number 58851    Answers: 0   Comments: 0

6+2×3

$$\mathrm{6}+\mathrm{2}×\mathrm{3} \\ $$

Question Number 58832    Answers: 2   Comments: 4

find x if x^2 =16^x

$$\mathrm{find}\:\mathrm{x}\:\mathrm{if}\:\mathrm{x}^{\mathrm{2}} =\mathrm{16}^{\mathrm{x}} \\ $$

Question Number 58827    Answers: 1   Comments: 3

Find Σ_(x=1) ^∞ ((1/x)−sin((1/x)))

$$\mathrm{Find}\:\:\sum_{\mathrm{x}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right) \\ $$$$ \\ $$

Question Number 58816    Answers: 2   Comments: 0

Question Number 58804    Answers: 2   Comments: 1

Find the value of x: 4 cos x + 3 sin x = 2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}:\:\:\:\:\mathrm{4}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\mathrm{2} \\ $$

Question Number 58800    Answers: 2   Comments: 2

Question Number 58867    Answers: 0   Comments: 4

1: lim_(x→0) sin((1/x)) 2: lim_(x→∞) sin(x)

$$\mathrm{1}:\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:{sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{2}:\:\underset{{x}\rightarrow\infty} {{lim}}\:{sin}\left({x}\right) \\ $$

Question Number 58791    Answers: 1   Comments: 0

Show that: ∫_( 0) ^( ∞) ((sin(x))/x) = (π/2)

$$\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\:\:\frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\:\:\:=\:\:\frac{\pi}{\mathrm{2}} \\ $$

Question Number 58789    Answers: 0   Comments: 2

Question Number 58785    Answers: 1   Comments: 0

Find the general solution of differential equation below : (cos x cos y + sin^2 x) dx − (sin x sin y + cos^2 y) dy = 0

$${Find}\:\:{the}\:\:{general}\:\:{solution}\:\:{of}\:\:\:{differential}\:\:{equation}\:\:{below}\:\:: \\ $$$$\left(\mathrm{cos}\:{x}\:\mathrm{cos}\:{y}\:+\:\mathrm{sin}^{\mathrm{2}} {x}\right)\:{dx}\:\:−\:\left(\mathrm{sin}\:{x}\:\mathrm{sin}\:{y}\:+\:\mathrm{cos}^{\mathrm{2}} {y}\right)\:{dy}\:\:=\:\:\mathrm{0} \\ $$

Question Number 58780    Answers: 1   Comments: 0

367×25 397×45 484×79

$$\mathrm{367}×\mathrm{25} \\ $$$$\mathrm{397}×\mathrm{45} \\ $$$$\mathrm{484}×\mathrm{79} \\ $$

Question Number 58779    Answers: 0   Comments: 0

What is area of the square. L=3^2 Width=1.3

$$\mathrm{What}\:\mathrm{is}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\mathrm{L}=\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{Width}=\mathrm{1}.\mathrm{3} \\ $$

Question Number 58778    Answers: 0   Comments: 0

4.8×1.3

$$\mathrm{4}.\mathrm{8}×\mathrm{1}.\mathrm{3} \\ $$

Question Number 58776    Answers: 1   Comments: 0

81^(sin^2 x) +81^(cos^2 x) =30 0≤x≤π.solve for x.

$$\mathrm{81}^{{sin}^{\mathrm{2}} {x}} +\mathrm{81}^{{cos}^{\mathrm{2}} {x}} =\mathrm{30} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\pi.{solve}\:{for}\:{x}. \\ $$

Question Number 58775    Answers: 0   Comments: 0

solve exactly: x^8 −8x^7 −16x^6 +208x^5 −152x^4 −928x^3 +704x^2 +1088x−368=0

$$\mathrm{solve}\:\mathrm{exactly}: \\ $$$${x}^{\mathrm{8}} −\mathrm{8}{x}^{\mathrm{7}} −\mathrm{16}{x}^{\mathrm{6}} +\mathrm{208}{x}^{\mathrm{5}} −\mathrm{152}{x}^{\mathrm{4}} −\mathrm{928}{x}^{\mathrm{3}} +\mathrm{704}{x}^{\mathrm{2}} +\mathrm{1088}{x}−\mathrm{368}=\mathrm{0} \\ $$

Question Number 58774    Answers: 0   Comments: 3

let f(x) =∫_(π/3) ^(π/2) (dθ/(1+xtanθ)) with x real 1) find a explicit form for f(x) 2) determine also g(x) =∫_(π/3) ^(π/2) ((tanθ)/((1+xtanθ)^2 )) dθ 3) let U_n (x) =f^((n)) (x) give U_n (x) at form of integral. 4) calculate ∫_(π/3) ^(π/2) (dθ/(1+2tanθ)) and ∫_(π/3) ^(π/2) ((tanθ dθ)/((1+2tanθ)^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{\mathrm{1}+{xtan}\theta}\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}\theta}{\left(\mathrm{1}+{xtan}\theta\right)^{\mathrm{2}} }\:{d}\theta \\ $$$$\left.\mathrm{3}\right)\:{let}\:{U}_{{n}} \left({x}\right)\:={f}^{\left({n}\right)} \left({x}\right)\:\:{give}\:{U}_{{n}} \left({x}\right)\:{at}\:{form}\:{of}\:{integral}. \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{\mathrm{1}+\mathrm{2}{tan}\theta}\:\:{and}\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}\theta\:{d}\theta}{\left(\mathrm{1}+\mathrm{2}{tan}\theta\right)^{\mathrm{2}} } \\ $$

Question Number 58772    Answers: 1   Comments: 0

(1/6)×(2/5)

$$\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$ \\ $$

Question Number 58771    Answers: 0   Comments: 0

decompose inside R(x) the fraction F(x) =(1/((x^2 −4)^n ))

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{{n}} } \\ $$

Question Number 58770    Answers: 2   Comments: 1

find the value of integrals I =∫_0 ^∞ (dx/((x^2 +1)^3 )) , J =∫_0 ^∞ (dx/((x^2 +1)^5 ))

$${find}\:{the}\:{value}\:{of}\:{integrals} \\ $$$$\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:\:\:,\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 58769    Answers: 0   Comments: 1

decompose the fractions inside C(x) 1) (1/((x^2 +1)^3 )) 2) (1/((x^2 +1)^5 ))

$${decompose}\:{the}\:{fractions}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 58756    Answers: 3   Comments: 0

  Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519      Pg 1520   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com