Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1516
Question Number 53118 Answers: 1 Comments: 0
$$\mathrm{If}\:{a}<\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{\mathrm{10}+\mathrm{3}\:\mathrm{cos}\:{x}}\:{dx}<{b},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{ordered}\:\mathrm{pair}\:\left({a},\:{b}\right)\:\mathrm{is} \\ $$
Question Number 53114 Answers: 0 Comments: 1
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sin}\left({nx}\right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{A}_{{n}} \\ $$
Question Number 53113 Answers: 0 Comments: 1
$${let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}+\mathrm{1}}{\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$${find}\:{value}\:{of}\:{I}\:. \\ $$
Question Number 53112 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{1}+\mathrm{2}{sinx}}{\mathrm{3}\:+\mathrm{2}{cosx}}{dx} \\ $$$${let}\:{A}\:=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}+\mathrm{2}{sinx}}{\mathrm{3}\:+\mathrm{2}{cosx}}{dx}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{3}+\mathrm{2}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{4}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\frac{\mathrm{3}+\mathrm{3}{t}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} +\mathrm{4}{t}\:+\mathrm{1}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{5}+{t}^{\mathrm{2}} \right)}{dt}\:\:{let}\:{decompose}\:{F}\left({t}\right)=\frac{{t}^{\mathrm{2}} \:+\mathrm{4}{t}+\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} \:+\mathrm{5}\right)} \\ $$$${F}\left({t}\right)=\frac{{at}\:+{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{ct}\:+{d}}{{t}^{\mathrm{2}} \:+\mathrm{5}}\:\Rightarrow\left({at}+{b}\right)\left({t}^{\mathrm{2}} \:+\mathrm{5}\right)+\left({ct}+{d}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\:={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:+\mathrm{1}\:\Rightarrow \\ $$$${at}^{\mathrm{3}} \:+\mathrm{5}{at}\:+{bt}^{\mathrm{2}} \:+\mathrm{5}{b}\:+{ct}^{\mathrm{3}} \:+{ct}\:+{dt}^{\mathrm{2}} \:+{d}\:={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:+\mathrm{1}\:\Rightarrow \\ $$$$\left({a}+{c}\right){t}^{\mathrm{3}} \:+\left({b}+{d}\right){t}^{\mathrm{2}} \:+\left(\mathrm{5}{a}+{c}\right){t}\:+\mathrm{5}{b}\:+{d}\:={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:+\mathrm{1}\:\Rightarrow{a}+{c}=\mathrm{0}\:{and}\:{b}+{d}=\mathrm{1}\:{and} \\ $$$$\mathrm{5}{a}+{c}\:=\mathrm{4}\:{and}\:\mathrm{5}{b}+{d}\:=\mathrm{1}\:\Rightarrow{c}=−{a}\:\Rightarrow{a}=\mathrm{1}\:\Rightarrow{c}=−\mathrm{1}\: \\ $$$${we}\:{have}\:{d}=\mathrm{1}−{b}\:\Rightarrow\mathrm{5}{b}\:+\mathrm{1}−{b}\:=\mathrm{1}\:\Rightarrow{b}=\mathrm{0}\:\Rightarrow{d}=\mathrm{1}\:\Rightarrow \\ $$$${F}\left({t}\right)=\frac{{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{−{t}\:+\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{5}}\:\:\Rightarrow\:{A}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:{F}\left({t}\right){dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\:+\int_{\mathrm{0}} ^{\infty} \:\frac{−\mathrm{2}{t}\:+\mathrm{2}}{{t}^{\mathrm{2}} \:+\mathrm{5}}{dt} \\ $$$$=\left[{ln}\left(\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{5}}\right)\right]_{\mathrm{0}} ^{+\infty} \:\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{5}}\:={ln}\left(\mathrm{5}\right)\:+\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{5}}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{5}}{dt}\:=_{{t}\:=\sqrt{\mathrm{5}}{u}\:} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{\mathrm{5}}{du}}{\mathrm{5}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\left[{artanu}\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{5}}}\:\Rightarrow \\ $$$${A}\:={ln}\left(\mathrm{5}\right)\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{5}}}\:. \\ $$
Question Number 53108 Answers: 1 Comments: 0
$$\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:+\:\mathrm{2}}\:\:−\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:−\:\mathrm{3}}\:\:\:>\:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 53086 Answers: 0 Comments: 1
$$\mathrm{JEE}\:\mathrm{Main}\:\mathrm{chemistry}\:\mathrm{errors}\:\mathrm{by} \\ $$$$\mathrm{Resonance}.\:\mathrm{Today}\:\mathrm{is}\:\mathrm{the}\:\mathrm{last}\:\mathrm{day} \\ $$$$\mathrm{for}\:\mathrm{raising}\:\mathrm{objectiions}. \\ $$$$\mathrm{You}\:\mathrm{need}\:\mathrm{to}\:\mathrm{tap}\:\mathrm{once}\:\mathrm{to}\:\mathrm{select}\:\mathrm{and}\:\mathrm{tap} \\ $$$$\mathrm{the}\:\mathrm{text}\:\mathrm{again}\:\mathrm{to}\:\mathrm{open}\:\mathrm{hyperlink}. \\ $$
Question Number 53081 Answers: 3 Comments: 0
Question Number 53080 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{2}+\mathrm{3}{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Question Number 53078 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }\:{dx}=... \\ $$
Question Number 53071 Answers: 0 Comments: 6
Question Number 53066 Answers: 1 Comments: 9
Question Number 53089 Answers: 0 Comments: 0
$$\int_{\:\frac{\pi}{\mathrm{2}}\:} ^{\:\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{5}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{tanh}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{3}}\right)} \\ $$
Question Number 53055 Answers: 0 Comments: 4
$${The}\:{area}\:{of}\:\bigtriangleup{XYZ}\:{is}\:\mathrm{50}{cm}^{\mathrm{2}} .\:{L}\: \\ $$$${is}\:{the}\:{midpoint}\:{of}\:{XZ}\:{andKY}\:\parallel{LM}. \\ $$$${find}\:{the}\:{area}\:{of}\:\:\bigtriangleup{ZLY}. \\ $$$${help}\:{please}\:{sir} \\ $$
Question Number 53063 Answers: 1 Comments: 0
$$\mathrm{Comment}\:\mathrm{resoudre}\:\mathrm{cette}\:\mathrm{eqution}\: \\ $$$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$
Question Number 53051 Answers: 2 Comments: 0
$$\int\mathrm{sin}\:\left(\mathrm{2}{x}\right)\mathrm{cos}\:{xd}\left({x}\right)= \\ $$
Question Number 53050 Answers: 0 Comments: 0
$$ \\ $$
Question Number 53048 Answers: 0 Comments: 1
Question Number 53043 Answers: 2 Comments: 1
Question Number 53034 Answers: 2 Comments: 0
$$\mathrm{Angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines}\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{1}}=\frac{\mathrm{y}−\mathrm{1}}{\mathrm{1}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{2}}\mathrm{and}\:\frac{\mathrm{x}−\mathrm{1}}{−\sqrt{\mathrm{3}−\mathrm{1}}}=\frac{\mathrm{y}−\mathrm{1}}{\sqrt{\mathrm{3}−\mathrm{1}}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{4}}\:\mathrm{is} \\ $$
Question Number 53033 Answers: 0 Comments: 0
$$\mathrm{in}\:\mathrm{the}\:\mathrm{law}\:\mathrm{of}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{condition}\: \\ $$
Question Number 53031 Answers: 1 Comments: 1
Question Number 53025 Answers: 1 Comments: 1
Question Number 53007 Answers: 0 Comments: 0
$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$
Question Number 52999 Answers: 0 Comments: 6
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{1}}\:\:\boldsymbol{\mathrm{dx}}\:\:\: \\ $$
Question Number 52993 Answers: 0 Comments: 2
Question Number 52992 Answers: 3 Comments: 1
Pg 1511 Pg 1512 Pg 1513 Pg 1514 Pg 1515 Pg 1516 Pg 1517 Pg 1518 Pg 1519 Pg 1520
Terms of Service
Privacy Policy
Contact: info@tinkutara.com