Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1515

Question Number 58238    Answers: 0   Comments: 0

∫_( 0) ^( 1) (((3x^3 − x^2 + 2x − 4)/(√(x^2 − 3x + 2)))) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\left(\frac{\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:−\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\mathrm{2}\boldsymbol{\mathrm{x}}\:−\:\mathrm{4}}{\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\boldsymbol{\mathrm{x}}\:+\:\mathrm{2}}}\right)\:\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 58222    Answers: 2   Comments: 4

∫_0 ^1 x^x dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} {dx} \\ $$

Question Number 58220    Answers: 1   Comments: 0

find ∫ (dx/((x^2 +x)(√(−x^2 +2x +3))))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}\right)\sqrt{−{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{3}}} \\ $$$$ \\ $$

Question Number 58216    Answers: 1   Comments: 1

The molar heat capacity of a metal at low temperature varies with the temperature according to the equation C = bθ + (a/H)θ^3 where a, b and H are constant. How much heat per mole is transfered during the process in which the temperature change from 0.01H to 0.02H ?

$$\mathrm{The}\:\mathrm{molar}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{metal}\:\:\mathrm{at} \\ $$$$\mathrm{low}\:\mathrm{temperature}\:\mathrm{varies}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\mathrm{temperature}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\mathrm{C}\:=\:\mathrm{b}\theta\:+\:\frac{\mathrm{a}}{\mathrm{H}}\theta^{\mathrm{3}} \\ $$$$\mathrm{where}\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{H}\:\mathrm{are}\:\mathrm{constant}. \\ $$$$\mathrm{How}\:\mathrm{much}\:\mathrm{heat}\:\mathrm{per}\:\mathrm{mole}\:\mathrm{is}\:\mathrm{transfered} \\ $$$$\mathrm{during}\:\mathrm{the}\:\mathrm{process}\:\mathrm{in}\:\mathrm{which}\:\mathrm{the}\: \\ $$$$\mathrm{temperature}\:\mathrm{change}\:\mathrm{from}\:\mathrm{0}.\mathrm{01H}\: \\ $$$$\mathrm{to}\:\mathrm{0}.\mathrm{02H}\:? \\ $$

Question Number 58212    Answers: 0   Comments: 0

let f(x) =∫_0 ^∞ e^(−x[t]) sin(xt)dt with x>0 1) find a explicit form for f(x) 2) let U_n =nf(n) find lim_(n→+∞) U_n and study the convergence of ΣU_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}\left[{t}\right]} \:{sin}\left({xt}\right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{U}_{{n}} ={nf}\left({n}\right)\:\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:\:\:{and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma{U}_{{n}} \\ $$

Question Number 58211    Answers: 0   Comments: 2

∫_( 0) ^(2π) ∣ cos x−sin x ∣dx =

$$\underset{\:\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\:\mid\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:\mid{dx}\:= \\ $$

Question Number 58210    Answers: 0   Comments: 5

find two possible number such that 1) xy=(x/y)=x−y 2)xy=((2x)/y)=3(x−y) 3) xy=(x/y)=2(x−y).

$$\mathrm{find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{x}−\mathrm{y} \\ $$$$\left.\mathrm{2}\right)\mathrm{xy}=\frac{\mathrm{2x}}{\mathrm{y}}=\mathrm{3}\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 58203    Answers: 1   Comments: 0

A battery can supply current of 1.2A and 0.4A through 4Ω and 14Ω respectively. Calculate the internal resistance of the battery

$$\mathrm{A}\:\mathrm{battery}\:\mathrm{can}\:\mathrm{supply}\:\mathrm{current}\:\mathrm{of}\:\mathrm{1}.\mathrm{2A}\: \\ $$$$\mathrm{and}\:\mathrm{0}.\mathrm{4A}\:\mathrm{through}\:\mathrm{4}\Omega\:\mathrm{and}\:\mathrm{14}\Omega\:\:\mathrm{respectively}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{internal}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{battery} \\ $$

Question Number 58196    Answers: 1   Comments: 0

The molar heat capacity of constant presure of a gas varies with the temperature according to the equation C_p = a + bθ −(C/θ^2 ) where a,b and C are constants. How much heat is transfered during an isobaric process in which n mole of gas undergo a temperature rise from θ_(i ) to θ_f ?

$$\mathrm{The}\:\mathrm{molar}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{of}\:\mathrm{constant} \\ $$$$\mathrm{presure}\:\mathrm{of}\:\mathrm{a}\:\mathrm{gas}\:\mathrm{varies}\:\mathrm{with}\:\mathrm{the}\:\mathrm{temperature} \\ $$$$\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{p}} \:=\:\:\mathrm{a}\:+\:\mathrm{b}\theta\:−\frac{\mathrm{C}}{\theta^{\mathrm{2}} } \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{constants}. \\ $$$$\:\:\mathrm{How}\:\mathrm{much}\:\mathrm{heat}\:\mathrm{is}\:\mathrm{transfered}\:\mathrm{during} \\ $$$$\:\:\:\mathrm{an}\:\mathrm{isobaric}\:\mathrm{process}\:\mathrm{in}\:\mathrm{which}\:\mathrm{n}\:\mathrm{mole} \\ $$$$\:\:\:\mathrm{of}\:\mathrm{gas}\:\mathrm{undergo}\:\mathrm{a}\:\mathrm{temperature}\:\mathrm{rise} \\ $$$$\:\:\:\:\mathrm{from}\:\theta_{{i}\:} \mathrm{to}\:\theta_{{f}} \:? \\ $$

Question Number 58195    Answers: 2   Comments: 0

(1/x)+(1/y)=(3/4) (x^2 /y)+(y^2 /x)=9 find the value of x and y

$$\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{9} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$

Question Number 58193    Answers: 0   Comments: 0

If z ∈ C such that R(z^n )>0 for n∈N^+ . Show that z ∈R^+ .

$$\mathrm{If}\:{z}\:\in\:\mathbb{C}\:\:\mathrm{such}\:\mathrm{that}\:\mathfrak{R}\left({z}^{{n}} \right)>\mathrm{0}\:\mathrm{for}\:{n}\in\mathbb{N}^{+} . \\ $$$$\mathrm{Show}\:\mathrm{that}\:{z}\:\in\mathbb{R}^{+} . \\ $$

Question Number 58187    Answers: 0   Comments: 0

let f(x) =∫_1 ^3 arctan(x+(x/t))dt withx>0 1) determine a explicit form of f(x) 2) give f^′ (x) at form of integral and find its value 3) calculate ∫_1 ^3 arctan(1+(1/t))dt and ∫_1 ^3 arctan(2+(2/t))dt . 4) calculate ∫_1 ^3 (2t−1)arctan(1+(1/t))dt .

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left({x}+\frac{{x}}{{t}}\right){dt}\:\:\:{withx}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{give}\:{f}^{'} \left({x}\right)\:{at}\:{form}\:{of}\:{integral}\:{and}\:{find}\:{its}\:{value} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt}\:\:\:{and}\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{2}+\frac{\mathrm{2}}{{t}}\right){dt}\:. \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\left(\mathrm{2}{t}−\mathrm{1}\right){arctan}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt}\:. \\ $$

Question Number 58185    Answers: 0   Comments: 0

find ∫ ((xdx)/(cosx +sin(2x)))

$${find}\:\int\:\:\:\frac{{xdx}}{{cosx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 58184    Answers: 0   Comments: 0

find ∫ ((xdx)/(sinx +cos(2x)))

$${find}\:\:\int\:\:\:\:\:\:\frac{{xdx}}{{sinx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 58178    Answers: 0   Comments: 0

Question Number 58177    Answers: 2   Comments: 0

cos^(−1) (1/2) + 2 sin^(−1) (1/2) =

$$\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:\:= \\ $$

Question Number 58176    Answers: 1   Comments: 0

If x_1 , x_2 , x_3 , x_4 are roots of the equation x^4 −x^3 sin 2β+x^2 cos 2β−x cos β−sin β=0, then tan^(−1) x_1 +tan^(−1) x_2 +tan^(−1) x_3 +tan^(−1) x_4 =

$$\mathrm{If}\:\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} ,\:{x}_{\mathrm{4}} \:\:\mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} \mathrm{sin}\:\mathrm{2}\beta+{x}^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\beta−{x}\:\mathrm{cos}\:\beta−\mathrm{sin}\:\beta=\mathrm{0}, \\ $$$$\mathrm{then} \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{1}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{2}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{3}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{4}} = \\ $$

Question Number 58175    Answers: 1   Comments: 0

The value of sin(π+θ) sin(π−θ) cosec^2 θ is equal to

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\left(\pi+\theta\right)\:\mathrm{sin}\left(\pi−\theta\right)\:\mathrm{cosec}^{\mathrm{2}} \theta \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 58174    Answers: 0   Comments: 2

Four digit integers are taken at random and are multiplied together. Then the probability that only one of them will be alive at the end of the year is

$$\mathrm{Four}\:\mathrm{digit}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{taken}\:\mathrm{at}\:\mathrm{random} \\ $$$$\mathrm{and}\:\mathrm{are}\:\mathrm{multiplied}\:\mathrm{together}.\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{only}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{alive}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{year}\:\mathrm{is} \\ $$

Question Number 58171    Answers: 1   Comments: 0

a particle of mass m kg is moving along a smooth wire that is fixed in a plane. The polar equation of the wire is r = ae^(3θ) . The particle moves with a cons tant velocity of 6. At time t = 0 , the par ticle is at the point with polar equation (a,θ) a)Find the transverse and radial compo nents of the acceleration of the particle in terms of a and t. b) the resultant force on the particle is F. Show that the magnitude of F at time t is 360mae^(18t)

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along} \\ $$$$\mathrm{a}\:\mathrm{smooth}\:\mathrm{wire}\:\mathrm{that}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}. \\ $$$$\mathrm{The}\:\mathrm{polar}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}\:\:\mathrm{is}\: \\ $$$$\mathrm{r}\:=\:\mathrm{ae}^{\mathrm{3}\theta} .\:\mathrm{The}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{cons} \\ $$$$\mathrm{tant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{6}.\:\mathrm{At}\:\mathrm{time}\:\:\mathrm{t}\:=\:\mathrm{0}\:,\:\mathrm{the}\:\mathrm{par} \\ $$$$\mathrm{ticle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{with}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\left(\mathrm{a},\theta\right) \\ $$$$\left.\mathrm{a}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{transverse}\:\mathrm{and}\:\mathrm{radial}\:\mathrm{compo} \\ $$$$\mathrm{nents}\:\mathrm{of}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{t}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{F}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{F}\:\mathrm{at}\:\mathrm{time} \\ $$$$\mathrm{t}\:\mathrm{is}\:\mathrm{360mae}^{\mathrm{18t}} \\ $$

Question Number 58168    Answers: 2   Comments: 0

find ∫ ((√(tanx))/(sin(2x)))dx

$${find}\:\int\:\:\:\:\frac{\sqrt{{tanx}}}{{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Question Number 58156    Answers: 1   Comments: 0

Jaiden buys 334 cupcakes.He got 14 more cupcakes.How many cupcakes did he got altogether?

$$\mathrm{Jaiden}\:\mathrm{buys}\:\mathrm{334}\:\mathrm{cupcakes}.\mathrm{He}\:\mathrm{got}\:\mathrm{14}\:\mathrm{more}\:\mathrm{cupcakes}.\mathrm{How}\:\mathrm{many}\:\mathrm{cupcakes}\:\mathrm{did}\:\mathrm{he}\:\mathrm{got}\:\mathrm{altogether}? \\ $$

Question Number 58154    Answers: 1   Comments: 0

A(1,1+i),B((√2)+i,2),C(1−3i,1−i) are given. find angle between: AB and AC .

$$\boldsymbol{\mathrm{A}}\left(\mathrm{1},\mathrm{1}+\boldsymbol{\mathrm{i}}\right),\boldsymbol{\mathrm{B}}\left(\sqrt{\mathrm{2}}+\boldsymbol{\mathrm{i}},\mathrm{2}\right),\boldsymbol{\mathrm{C}}\left(\mathrm{1}−\mathrm{3}\boldsymbol{\mathrm{i}},\mathrm{1}−\boldsymbol{\mathrm{i}}\right) \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{between}}:\:\:\boldsymbol{\mathrm{AB}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{AC}}\:. \\ $$

Question Number 58153    Answers: 1   Comments: 0

arctan((√2)−i)=? [i=(√(−1))]

$$\boldsymbol{\mathrm{arctan}}\left(\sqrt{\mathrm{2}}−\boldsymbol{\mathrm{i}}\right)=?\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{i}}=\sqrt{−\mathrm{1}}\right] \\ $$

Question Number 58145    Answers: 1   Comments: 0

how to factorize a^3 b^2 +a^2 b^3

$${how}\:{to}\:{factorize} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{3}} \: \\ $$

Question Number 58135    Answers: 1   Comments: 0

  Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com