Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1515

Question Number 58682    Answers: 1   Comments: 0

3(1/5)+2(1/(15))

$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{5}}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{15}} \\ $$

Question Number 58675    Answers: 0   Comments: 5

Question Number 58671    Answers: 3   Comments: 2

lim_(x→0) ((1−cos5x)/x^2 )

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\:\frac{\mathrm{1}−{cos}\mathrm{5}{x}}{{x}^{\mathrm{2}} } \\ $$

Question Number 58669    Answers: 2   Comments: 0

{[3×(5+5)]+5}+{[4+(5×4)+5]}

$$\left\{\left[\mathrm{3}×\left(\mathrm{5}+\mathrm{5}\right)\right]+\mathrm{5}\right\}+\left\{\left[\mathrm{4}+\left(\mathrm{5}×\mathrm{4}\right)+\mathrm{5}\right]\right\} \\ $$

Question Number 58668    Answers: 0   Comments: 4

Question Number 58663    Answers: 3   Comments: 0

Question Number 58660    Answers: 0   Comments: 5

Question Number 58652    Answers: 1   Comments: 1

Question Number 58648    Answers: 2   Comments: 4

Question Number 58644    Answers: 1   Comments: 0

6+3^2 ×4

$$\mathrm{6}+\mathrm{3}^{\mathrm{2}} ×\mathrm{4} \\ $$

Question Number 58641    Answers: 1   Comments: 1

What is (1/8)+(1/4)?

$$\mathrm{What}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{4}}? \\ $$

Question Number 58639    Answers: 1   Comments: 0

Question Number 58627    Answers: 1   Comments: 3

Question Number 58626    Answers: 1   Comments: 1

Question Number 58622    Answers: 1   Comments: 2

solve x+y=2xy y+z=3yz z+x=7zx

$${solve} \\ $$$${x}+{y}=\mathrm{2}{xy} \\ $$$${y}+{z}=\mathrm{3}{yz} \\ $$$${z}+{x}=\mathrm{7}{zx} \\ $$

Question Number 58618    Answers: 1   Comments: 0

Question Number 58614    Answers: 2   Comments: 0

with reference to book i am posting some basic question for students. 1)two charged coducting sphere of radius r_(1 ) and r_2 are positvely charged separated at a distance d from each other. force of interaction is F which is correct answer a)F=(1/(4πε))((q_1 q_2 )/d^2 ) b)F>(1/(4πε))((q_1 q_2 )/d^2 ) c)F<(1/(4πε))((q_1 q_2 )/d^2 ) d)none of these 2)same question as 1 but one is +ve q_1 and another is −ve q_2 then which option is correct a)F=F_(columb) b)F>F_(columb) c)F<F_(columb) d)none of these pls give answer with explanatiin..

$${with}\:{reference}\:{to}\:{book}\:\:{i}\:{am}\:{posting}\:{some}\:{basic} \\ $$$${question}\:{for}\:{students}. \\ $$$$\left.\mathrm{1}\right){two}\:{charged}\:{coducting}\:{sphere}\:{of}\:{radius} \\ $$$${r}_{\mathrm{1}\:} {and}\:{r}_{\mathrm{2}} \:{are}\:{positvely}\:{charged}\:{separated} \\ $$$${at}\:{a}\:{distance}\:{d}\:{from}\:{each}\:{other}. \\ $$$${force}\:{of}\:{interaction}\:{is}\:{F} \\ $$$${which}\:{is}\:{correct}\:{answer}\: \\ $$$$\left.{a}\right){F}=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon}\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} }{{d}^{\mathrm{2}} } \\ $$$$\left.{b}\right){F}>\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon}\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} }{{d}^{\mathrm{2}} } \\ $$$$\left.{c}\right){F}<\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon}\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} }{{d}^{\mathrm{2}} } \\ $$$$\left.{d}\right){none}\:{of}\:{these} \\ $$$$\left.\mathrm{2}\right){same}\:{question}\:{as}\:\mathrm{1}\:{but}\:{one}\:{is}\:+{ve}\:{q}_{\mathrm{1}} \:{and} \\ $$$${another}\:{is}\:−{ve}\:{q}_{\mathrm{2}} \:{then}\:{which}\:{option}\:{is}\:{correct} \\ $$$$\left.{a}\right){F}={F}_{{columb}} \\ $$$$\left.{b}\right){F}>{F}_{{columb}} \\ $$$$\left.{c}\right){F}<{F}_{{columb}} \\ $$$$\left.{d}\right){none}\:{of}\:{these} \\ $$$${pls}\:{give}\:{answer}\:{with}\:{explanatiin}.. \\ $$

Question Number 58612    Answers: 1   Comments: 0

P(x) is a monic−fifth degree polynomial that satisfy P(1) = 1 P(2) = 4 P(3) = 9 P(4) = 16 P(5) = 25 P(6) = ?

$${P}\left({x}\right)\:\:{is}\:\:{a}\:\:{monic}−{fifth}\:\:{degree}\:\:{polynomial}\:\:{that}\:{satisfy} \\ $$$$\:\:\:\:{P}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1} \\ $$$$\:\:\:\:{P}\left(\mathrm{2}\right)\:\:=\:\:\mathrm{4} \\ $$$$\:\:\:\:{P}\left(\mathrm{3}\right)\:\:=\:\:\mathrm{9} \\ $$$$\:\:\:\:{P}\left(\mathrm{4}\right)\:\:=\:\:\mathrm{16} \\ $$$$\:\:\:\:{P}\left(\mathrm{5}\right)\:\:=\:\:\mathrm{25} \\ $$$$\:\:\:\:{P}\left(\mathrm{6}\right)\:\:=\:\:? \\ $$$$ \\ $$

Question Number 58609    Answers: 1   Comments: 0

Question Number 58600    Answers: 2   Comments: 0

x ∈ R^+ (positive real numbers) Prove that x^2 + (2/x) ≥ 3

$${x}\:\:\in\:\:\mathbb{R}^{+} \:\left({positive}\:\:{real}\:\:{numbers}\right) \\ $$$${Prove}\:\:{that}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{x}}\:\:\geqslant\:\:\mathrm{3} \\ $$

Question Number 58595    Answers: 1   Comments: 0

Question Number 58592    Answers: 1   Comments: 0

If ∣z−1∣=1, then prove that arg(z) = (1/2)arg(z−1).

$${If}\:\mid{z}−\mathrm{1}\mid=\mathrm{1},\:{then}\:{prove}\:{that}\:{arg}\left({z}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{arg}\left({z}−\mathrm{1}\right). \\ $$

Question Number 58587    Answers: 0   Comments: 0

For x > 0 , y < 1 . Prove that x^y + y^x > 1

$${For}\:\:\:{x}\:>\:\mathrm{0}\:\:,\:\:\:{y}\:\:<\:\:\mathrm{1}\:. \\ $$$${Prove}\:\:{that}\:\:\:\:{x}^{{y}} \:+\:{y}^{{x}} \:\:>\:\:\mathrm{1} \\ $$

Question Number 58584    Answers: 0   Comments: 0

((X−λ)/(√(λ/n)))

$$\frac{{X}−\lambda}{\sqrt{\frac{\lambda}{{n}}}} \\ $$

Question Number 58576    Answers: 2   Comments: 0

lim_(x→∞) (((x−20)^(70) .(2x+3)^(30) )/((4x−1)^(15) .(5−x^(85) )))

$$\underset{{x}\rightarrow\infty} {{lim}}\:\:\frac{\left({x}−\mathrm{20}\right)^{\mathrm{70}} .\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{30}} }{\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{15}} .\left(\mathrm{5}−{x}^{\mathrm{85}} \right)} \\ $$

Question Number 58569    Answers: 1   Comments: 0

A vector has magnitude 6 and bearing 100°.write it in the form ai+bj

$${A}\:{vector}\:{has}\:{magnitude} \\ $$$$\mathrm{6}\:{and}\:{bearing}\:\mathrm{100}°.{write} \\ $$$${it}\:{in}\:{the}\:{form}\:{ai}+{bj} \\ $$

  Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517      Pg 1518      Pg 1519   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com