Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1515
Question Number 57820 Answers: 0 Comments: 1
$${solve}\:\sqrt{{x}+\mathrm{1}}{y}^{'} −\sqrt{{x}−\mathrm{2}}{y}\:={x}^{\mathrm{2}} \:{e}^{−\mathrm{2}{x}} \:\:\:{with}\:{y}\left(\mathrm{3}\right)\:=\mathrm{1} \\ $$
Question Number 57819 Answers: 2 Comments: 7
$$\boldsymbol{\mathrm{a}}.\:\:\int\:\:\:\left[\frac{\mathrm{1}−\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }\right]\:^{\frac{\mathrm{1}}{\mathrm{2}}} \:\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\:\:\:\int\:\:\frac{\boldsymbol{\mathrm{lnx}}}{\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}}}=? \\ $$$$\boldsymbol{\mathrm{c}}.\:\:\:\:\:\:\:\underset{\:\sqrt{\boldsymbol{\mathrm{e}}}} {\overset{\:\:\:\:\:\boldsymbol{\mathrm{e}}} {\int}}\:\:\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{lnx}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 57818 Answers: 1 Comments: 0
Question Number 57817 Answers: 1 Comments: 1
$$\:{find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+\mathrm{3}{sin}^{\mathrm{2}} {x}}} \\ $$
Question Number 57805 Answers: 1 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{image}\:\mathrm{of}\:\mathrm{y}=\mathrm{3x}+\mathrm{1}\:\mathrm{under}\:\mathrm{the} \\ $$$$\mathrm{mapping}\:\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{3}}\\{\mathrm{1}\:\:\:\mathrm{2}}\end{pmatrix}. \\ $$
Question Number 57789 Answers: 0 Comments: 0
Question Number 57791 Answers: 3 Comments: 0
$$\:\mathrm{If}\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\mathrm{1}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:\:=\:\:\mathrm{3}\:\: \\ $$$$\mathrm{then}\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}\:\:} =\:\:? \\ $$
Question Number 57790 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{N}=\begin{bmatrix}{\mathrm{5}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{6}\:\:\:\:\:\:\:\mathrm{4}}\end{bmatrix}\mathrm{and}\:\mathrm{P}=\begin{bmatrix}{\mathrm{4}\:\:\:\:\:−\mathrm{3}}\\{−\mathrm{6}\:\:\:\:\mathrm{5}}\end{bmatrix}, \\ $$$$\mathrm{find}\:\mathrm{NP}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{P}. \\ $$
Question Number 57785 Answers: 1 Comments: 2
Question Number 57784 Answers: 0 Comments: 0
Question Number 57783 Answers: 1 Comments: 0
Question Number 57779 Answers: 0 Comments: 0
$${kno}_{\mathrm{3}} \Rightarrow{k}_{\mathrm{2}} {o}+{n}_{\mathrm{2}} +{o}_{\mathrm{2}} \\ $$
Question Number 57770 Answers: 1 Comments: 0
Question Number 57754 Answers: 2 Comments: 1
$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right) \\ $$$$\left(\boldsymbol{{f}}\circ\boldsymbol{{f}}\right)'=? \\ $$
Question Number 57750 Answers: 1 Comments: 0
$${find}\:\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{25}−{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 57749 Answers: 1 Comments: 3
$${find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{9}+{x}^{\mathrm{2}} }} \\ $$
Question Number 57748 Answers: 2 Comments: 2
$${find}\:\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 57746 Answers: 0 Comments: 4
$${let}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{xt}\:+\mathrm{1}\right)^{\mathrm{2}} }\:\:{with}\:\mid{x}\mid<\mathrm{1}\:\:\:\left({x}\:{real}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{xt}\:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{cos}\theta\:{t}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:{and}\: \\ $$$${B}\left(\theta\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{cos}\theta\:{t}\:+\mathrm{1}\right)^{\mathrm{3}} }\:\:\:\:{with}\:\mathrm{0}<\theta\:<\frac{\pi}{\mathrm{2}}\:\:\:\:\:. \\ $$
Question Number 57736 Answers: 1 Comments: 0
$${Can}\:{we}\:{use}\:{L}'{H}\hat {{o}pital}'{s}\:{rule}\:{if}\:{we}\:{have} \\ $$$${a}\:{fraction}\:{in}\:{the}\:{form}\:\left(+\infty\right)/\left(−\infty\right)\:\:\:? \\ $$
Question Number 57735 Answers: 2 Comments: 0
Question Number 57719 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{complex}\:\mathrm{number}\:{z}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{sinh}\:{z}\:=\:{i} \\ $$
Question Number 57706 Answers: 0 Comments: 0
Question Number 57700 Answers: 1 Comments: 0
$$\mathrm{R}\left(\mathrm{1}\:−\:\mathrm{cos}\theta\right)\:=\:\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{Rsin}\theta\:=\:\mathrm{4} \\ $$$$\mathrm{R}\:=\:? \\ $$$$\theta\:=\:? \\ $$
Question Number 57698 Answers: 1 Comments: 1
Question Number 57695 Answers: 0 Comments: 0
Question Number 57688 Answers: 1 Comments: 12
$$\:\:\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{n}:\:\:\:\:\:\:\:\:\underset{\mathrm{i}} {\overset{\mathrm{n}\:−\:\mathrm{1}} {\sum}}\:\:\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{i}} \:\mathrm{2}^{\mathrm{i}} \:\:=\:\:\mathrm{65},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}\:\in\:\mathbb{Z}^{+} .\:\:\:\:\mathrm{where}\:\:\mathrm{zero}\:\mathrm{is}\: \\ $$$$\:\:\mathrm{included} \\ $$
Pg 1510 Pg 1511 Pg 1512 Pg 1513 Pg 1514 Pg 1515 Pg 1516 Pg 1517 Pg 1518 Pg 1519
Terms of Service
Privacy Policy
Contact: info@tinkutara.com