Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1513

Question Number 48063    Answers: 0   Comments: 0

let W(x) =∫_(−∞) ^(+∞) ((arctan(xt^2 ))/(2+t^2 ))dt 1) find a explicit form of f(x) 2) find the value of ∫_(−∞) ^(+∞) (t^2 /((2+t^2 )(1+x^2 t^4 )))dt .

$${let}\:{W}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{2}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} \right)}{dt}\:. \\ $$

Question Number 48062    Answers: 0   Comments: 0

calculate ∫_(−∞) ^(+∞) (((x^2 −3)sin(2x^2 ))/((x^2 +1)^3 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\left({x}^{\mathrm{2}} −\mathrm{3}\right){sin}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 48057    Answers: 2   Comments: 1

Question Number 48052    Answers: 2   Comments: 1

Question Number 48050    Answers: 1   Comments: 1

Question Number 48055    Answers: 2   Comments: 6

Solve the system: { ((x^3 +x^2 y−4xy^2 −4y^3 =0)),((x^2 −2xy−3y^2 −x−y=0)) :}

$${Solve}\:{the}\:{system}: \\ $$$$\begin{cases}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} {y}−\mathrm{4}{xy}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{3}} =\mathrm{0}}\\{{x}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{3}{y}^{\mathrm{2}} −{x}−{y}=\mathrm{0}}\end{cases} \\ $$

Question Number 48043    Answers: 0   Comments: 1

let f(α) =∫_(−∞) ^(+∞) ((cos(αx^3 ))/(x^2 +8)) dx 1)calculate f(α) 2) calculate ∫_(−∞) ^(+∞) ((cos(2x^3 ))/(x^2 +8))dx .

$${let}\:{f}\left(\alpha\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\alpha{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}\:{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}{dx}\:. \\ $$

Question Number 48042    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((2x+1)/((x^2 +i)(x^2 +4)))dx (i^2 =−1)

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +{i}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}\:\:\:\left({i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$

Question Number 48040    Answers: 0   Comments: 1

let f(α)=∫_(−∞) ^(+∞) ((xsin(αx))/((1+x^2 )^2 ))dx calculate f(α) and f^′ (α).(α from R) .

$${let}\:{f}\left(\alpha\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{xsin}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$${calculate}\:{f}\left(\alpha\right)\:{and}\:{f}^{'} \left(\alpha\right).\left(\alpha\:{from}\:{R}\right)\:. \\ $$

Question Number 48027    Answers: 2   Comments: 1

Question Number 48009    Answers: 0   Comments: 0

let f_n (t)=t^(n−1) sin(nθ) with t from[0,1[ and θ from [0,π[ 1) prove the uniform convergence of Σ f_n (t) on [0,1[ 2) let S(t)=Σ f_n (t) calculate ∫_0 ^1 S(t)dt.

$${let}\:\:\:{f}_{{n}} \left({t}\right)={t}^{{n}−\mathrm{1}} {sin}\left({n}\theta\right)\:{with}\:{t}\:{from}\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\:\theta\:{from}\:\left[\mathrm{0},\pi\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{uniform}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({t}\right)\:{on}\:\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{S}\left({t}\right)=\Sigma\:{f}_{{n}} \left({t}\right)\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {S}\left({t}\right){dt}. \\ $$

Question Number 47993    Answers: 0   Comments: 5

Solve in R ((59+(√(x−2))))^(1/3) +((12−(√(x−11))))^(1/3) =6

$${Solve}\:{in}\:\mathbb{R} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{59}+\sqrt{{x}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\mathrm{12}−\sqrt{{x}−\mathrm{11}}}=\mathrm{6} \\ $$

Question Number 47986    Answers: 3   Comments: 1

Question Number 47985    Answers: 1   Comments: 3

calculate I=∫_0 ^1 (√(1+2(√(x−x^2 ))))dx and J =∫_0 ^1 (√(1−2(√(x−x^2 ))))dx

$${calculate}\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{2}\sqrt{{x}−{x}^{\mathrm{2}} }}{dx}\:\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\mathrm{2}\sqrt{{x}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 47976    Answers: 0   Comments: 1

Question Number 47967    Answers: 1   Comments: 0

A particle moves in a linear scare such that acceleration after t seconds is a ms^(−2) where a= 2t^2 + t.If its initial velocity was 3ms^(−1) find an expression for S,the distance in meters traveled from start t seconds.

$${A}\:{particle}\:{moves}\:{in}\:{a}\:{linear}\:{scare}\:{such}\:{that}\:{acceleration} \\ $$$${after}\:{t}\:{seconds}\:{is}\:{a}\:{ms}^{−\mathrm{2}} \:{where}\:{a}=\:\mathrm{2}{t}^{\mathrm{2}} +\:{t}.{If}\:{its}\:{initial}\: \\ $$$${velocity}\:{was}\:\mathrm{3}{ms}^{−\mathrm{1}} \:{find}\:{an}\:{expression}\:{for}\:{S},{the}\:{distance}\:{in}\:{meters} \\ $$$${traveled}\:{from}\:{start}\:{t}\:{seconds}. \\ $$

Question Number 47966    Answers: 1   Comments: 1

a(x^2 +y^2 )+b(x+y)= c & x^2 −y^2 = R^2 Solve for x or y .

$${a}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+{b}\left({x}+{y}\right)=\:{c} \\ $$$$\:\&\:\:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{R}^{\mathrm{2}} \\ $$$${Solve}\:{for}\:{x}\:{or}\:{y}\:. \\ $$

Question Number 47965    Answers: 0   Comments: 0

A small body is made to travel linearly t sconds after the start.Its distance S meters from a fix point O on a linear scale is given by S = t^2 −5t + 6. a) How far is the body from O at the start? b)with what velocity does it start? c)when is the body momentarily at rest? d) What is the acceleration of the body?

$${A}\:{small}\:{body}\:{is}\:{made}\:{to}\:{travel}\:{linearly}\:{t}\:{sconds}\:{after}\:{the}\: \\ $$$${start}.{Its}\:{distance}\:{S}\:{meters}\:{from}\:{a}\:{fix}\:{point}\:{O}\:{on}\:{a}\: \\ $$$${linear}\:{scale}\:{is}\:{given}\:{by}\:{S}\:=\:{t}^{\mathrm{2}} −\mathrm{5}{t}\:+\:\mathrm{6}. \\ $$$$\left.{a}\right)\:{How}\:{far}\:{is}\:{the}\:{body}\:{from}\:{O}\:{at}\:{the}\:{start}? \\ $$$$\left.{b}\right){with}\:{what}\:{velocity}\:{does}\:{it}\:{start}? \\ $$$$\left.{c}\right){when}\:{is}\:{the}\:{body}\:{momentarily}\:{at}\:{rest}? \\ $$$$\left.{d}\right)\:{What}\:{is}\:{the}\:{acceleration}\:{of}\:{the}\:{body}? \\ $$

Question Number 47964    Answers: 0   Comments: 0

A particle A at rest with position vector 2i−j with mass 500kg is hit by another particle B moving at a velocity of (5i−4j)ms^(−1) with mass 300kg. and they all move in the direction of B. a) What is the momentum after impact? b) Calculate the impulse generated,hence or otherwise, Calculate the distance A and B cover after impact at a time of 1minute.

$${A}\:{particle}\:{A}\:{at}\:{rest}\:{with}\:{position}\:{vector}\:\mathrm{2}{i}−{j}\:\:{with}\:{mass}\:\mathrm{500}{kg}\:{is}\:{hit}\:{by}\: \\ $$$${another}\:{particle}\:{B}\:{moving}\:{at}\:{a}\:{velocity}\:{of}\:\left(\mathrm{5}{i}−\mathrm{4}{j}\right){ms}^{−\mathrm{1}} \:{with}\:{mass}\:\mathrm{300}{kg}. \\ $$$${and}\:{they}\:{all}\:{move}\:{in}\:{the}\:{direction}\:{of}\:{B}. \\ $$$$\left.{a}\right)\:{What}\:{is}\:{the}\:{momentum}\:{after}\:{impact}? \\ $$$$\left.{b}\right)\:{Calculate}\:{the}\:{impulse}\:{generated},{hence}\:{or}\:{otherwise}, \\ $$$${Calculate}\:{the}\:{distance}\:{A}\:{and}\:{B}\:{cover}\:{after}\:{impact}\:{at}\: \\ $$$${a}\:{time}\:{of}\:\mathrm{1}{minute}. \\ $$$$ \\ $$

Question Number 47960    Answers: 1   Comments: 0

Question Number 47979    Answers: 0   Comments: 8

Question Number 47957    Answers: 3   Comments: 3

Question Number 47947    Answers: 0   Comments: 1

Question Number 47939    Answers: 1   Comments: 2

Question Number 47938    Answers: 0   Comments: 1

Question Number 47932    Answers: 1   Comments: 1

  Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com