Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1513
Question Number 59193 Answers: 1 Comments: 0
Question Number 59190 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cosx}}{dx}\:. \\ $$
Question Number 59188 Answers: 2 Comments: 4
$${let}\:{f}\left({x}\right)={x}−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:\:{and}\:{g}\left({x}\right)\:=\frac{\mathrm{2}\:+\sqrt{{x}−\mathrm{3}}}{\mathrm{2}−\sqrt{{x}−\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:\:{D}_{{f}} \:\:,{D}_{{g}} \:\:\:{and}\:{D}_{{fog}} \:\:\:\:\:{and}\:\:{determine}\:{fog}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{gof}\left({x}\right)\:{and}\:{give}\:{D}_{{gof}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {f}\left({x}\right){dx}\:\:\:\: \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:\int_{\mathrm{4}} ^{\mathrm{5}} \:{g}\left({x}\right){dx}\:. \\ $$
Question Number 59187 Answers: 0 Comments: 2
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left({arctan}\left(\mathrm{1}+{x}\right)\right)−{ln}\left(\frac{\pi}{\mathrm{4}}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 59186 Answers: 0 Comments: 2
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{arctan}\left\{{ln}\left(\mathrm{1}+{x}\right)\right\}}{{x}^{\mathrm{2}} } \\ $$
Question Number 59185 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{sinx}}{dx} \\ $$$${let}\:{f}\left({x}\right)\:={sinx}\:\Rightarrow{f}\left({x}\right)\:={f}\left(\mathrm{0}\right)\:+{xf}^{'} \left(\mathrm{0}\right)\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{f}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}{f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:+{o}\left({x}^{\mathrm{4}} \right) \\ $$$${but}\:{f}\left(\mathrm{0}\right)\:=\mathrm{0}\:\:\:{f}^{'} \left({x}\right)\:={cosx}\:\Rightarrow{f}^{'} \left(\mathrm{0}\right)=\mathrm{1}\:\:\:\:{f}^{\left(\mathrm{2}\right)} \left({x}\right)\:=−{sinx}\:\Rightarrow{f}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:=−{cos}\left({x}\right)\:\Rightarrow{f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:=−\mathrm{1}\:\Rightarrow{sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:+{o}\left({x}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\left.{x}\left.−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:\leqslant{sinx}\:\leqslant{x}\:\:\:\:{for}\:{x}\:\in\right]\mathrm{0},\mathrm{1}\right]\:\:\:\frac{\mathrm{1}}{{x}}\:\leqslant\frac{\mathrm{1}}{{sinx}}\:\leqslant\frac{\mathrm{1}}{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}\:\Rightarrow\mathrm{1}\leqslant\frac{{x}}{{sinx}}\:\leqslant\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}}\:\Rightarrow \\ $$$$\mathrm{1}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{{sinx}}\:{dx}\:\leqslant\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}}\:=_{{x}\:=\sqrt{\mathrm{6}}{t}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}} \:\:\:\:\frac{\sqrt{\mathrm{6}}{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}} \:\:\left(\frac{\mathrm{1}}{\mathrm{1}−{t}}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt} \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\left[{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}} \:\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:\left\{\:{ln}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}}{\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}}\right)\right\}\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:{ln}\left(\frac{\sqrt{\mathrm{6}}+\mathrm{1}}{\sqrt{\mathrm{6}}−\mathrm{1}}\right)\:\Rightarrow \\ $$$$\mathrm{1}\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{sinx}}\:{dx}\:\leqslant\:\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{6}}+\mathrm{1}}{\sqrt{\mathrm{6}}−\mathrm{1}}\right)\:. \\ $$$$ \\ $$
Question Number 59184 Answers: 0 Comments: 0
$${find}\:\:\:\int\:\:\:\:\frac{{cos}\left(\mathrm{3}{x}\right)}{{ch}\left(\mathrm{2}{x}\right)}{dx}\:. \\ $$
Question Number 59183 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{1}+{ix}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }\:{dx} \\ $$
Question Number 59182 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{1}+{ix}\right) \\ $$$${determine}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right){dx} \\ $$
Question Number 59181 Answers: 1 Comments: 1
Question Number 59177 Answers: 0 Comments: 1
$$\int\:\:\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{cos}\:{x}}\:{dx}\:= \\ $$
Question Number 59175 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}−{cos}\left({x}\right)}{{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 59174 Answers: 0 Comments: 0
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{2}\right]^{\mathrm{2}} } \:\:\:\:\left({x}+\mathrm{1}−\sqrt{{y}}\right)\left({y}+\mathrm{1}−\sqrt{{x}}\right){dxdy}\: \\ $$
Question Number 59172 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:\:\:\left({x}+{y}\right){ln}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy}\: \\ $$
Question Number 59171 Answers: 0 Comments: 0
$${let}\:{f}\left({x},{y}\right)\:\:\frac{{arctan}\left({x}+\mathrm{2}{y}\right)}{{x}\:+{y}^{\mathrm{2}} } \\ $$$${calculate}\:\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:\:,\:\frac{\partial{f}}{\partial{y}}\left({x},{y}\right),\frac{\partial^{\mathrm{2}} {f}}{\partial{x}^{\mathrm{2}} }\left({x},{y}\right),\:\frac{\partial^{\mathrm{2}} {f}}{\partial{y}^{\mathrm{2}} }\left({x},{y}\right)\:,\:\frac{\partial^{\mathrm{2}} {f}}{\partial{x}\partial{y}}\left({x},{y}\right) \\ $$$$\frac{\partial^{\mathrm{2}} {f}}{\partial{y}\partial{x}}\left({x},{y}\right) \\ $$
Question Number 59170 Answers: 1 Comments: 0
$$\mathrm{If}{f}\left({x}\right)=\begin{vmatrix}{\mathrm{sec}\:{x}}&{\mathrm{cos}\:{x}}&{\mathrm{sec}^{\mathrm{2}} {x}+\mathrm{cosec}\:{x}\:\mathrm{cot}\:{x}}\\{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{cos}^{\mathrm{2}} {x}}&{\:\:\:\:\:\:\:\:\:\:\mathrm{cosec}^{\mathrm{2}} {x}}\\{\:\:\:\mathrm{1}}&{\mathrm{cos}^{\mathrm{2}} {x}}&{\:\:\:\:\:\:\:\:\:\:\mathrm{cos}^{\mathrm{2}} {x}}\end{vmatrix} \\ $$$$\mathrm{then}\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{f}\left({x}\right)\:{dx}\:= \\ $$
Question Number 59169 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }{dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 59168 Answers: 1 Comments: 0
$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}} \:+\mathrm{3}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$
Question Number 59167 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}^{\mathrm{2}} \:+\mathrm{1}}{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 59166 Answers: 0 Comments: 0
$$\mathrm{67}\left\{\left[\mathrm{4}×\left(\mathrm{3}+\mathrm{5}\right)+\mathrm{6}\right]\right\} \\ $$
Question Number 59165 Answers: 0 Comments: 0
$${let}\:{D}\:=\left\{\:\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}>\mathrm{0}\:,{y}>\mathrm{0}\:\:{and}\:\:{x}+{y}\:\leqslant\mathrm{2}\:\right\} \\ $$$${calculate}\:\int\int_{{D}} \:\left({x}+{y}\:−\sqrt{{x}+{y}}\right){dxdy}\: \\ $$
Question Number 59164 Answers: 1 Comments: 0
$$\mathrm{5}^{\mathrm{x}} =\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$
Question Number 59163 Answers: 0 Comments: 0
$$\left.{calculate}\:{A}_{{n}} =\int\int_{{W}_{{n}} } \:\:\:\frac{\mathrm{1}−\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:{dxdy}\:\:\:{with}\:{W}_{{n}} \:=\right]\frac{\mathrm{1}}{{n}},{n}\left[^{\mathrm{2}} \right. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 59162 Answers: 0 Comments: 0
$${calculate}\:\:\int\int_{{D}} \:\:\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{xy}\:{dxdy}\:\:{with} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:\:\:/\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\:\leqslant{x}\:\leqslant\mathrm{5}\:\right\} \\ $$
Question Number 59161 Answers: 0 Comments: 0
$${calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}{\mathrm{2}+{x}^{\mathrm{2}} }{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\mathrm{3}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 59152 Answers: 0 Comments: 1
Pg 1508 Pg 1509 Pg 1510 Pg 1511 Pg 1512 Pg 1513 Pg 1514 Pg 1515 Pg 1516 Pg 1517
Terms of Service
Privacy Policy
Contact: info@tinkutara.com