Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1513

Question Number 58043    Answers: 0   Comments: 1

how can i use the equation i created in app in power point?

$${how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{use}\:\mathrm{the}\:\mathrm{equation}\:{i}\:{created}\:{in}\:{app}\:{in}\:\mathrm{po}{wer}\:{point}? \\ $$

Question Number 58069    Answers: 1   Comments: 4

Between 100 and 600, how many number are such which are totally divisible by 11 or 17.

$${Between}\:\mathrm{100}\:{and}\:\mathrm{600},\:{how}\:{many}\:{number} \\ $$$${are}\:{such}\:{which}\:{are}\:{totally}\:{divisible}\:{by}\:\mathrm{11}\:{or}\:\mathrm{17}. \\ $$

Question Number 58067    Answers: 0   Comments: 1

Question Number 58027    Answers: 1   Comments: 0

Question Number 58025    Answers: 1   Comments: 1

Trace the changes in the sign and magnitude of ((sin 3θ)/(cos 2θ)) as the angle increases from 0 to (π/2). also find its minimum and maximum values.

$${Trace}\:{the}\:{changes}\:{in}\:{the}\:{sign}\:{and}\:{magnitude} \\ $$$${of}\:\:\frac{\mathrm{sin}\:\mathrm{3}\theta}{\mathrm{cos}\:\mathrm{2}\theta}\:{as}\:{the}\:{angle}\:{increases}\:{from}\:\mathrm{0}\:{to}\:\frac{\pi}{\mathrm{2}}. \\ $$$${also}\:{find}\:{its}\:{minimum}\:{and}\:{maximum}\:{values}. \\ $$

Question Number 58016    Answers: 2   Comments: 1

Value of lim_(x→0) ((cosh x−cos x)/(xsin x)) =?

$${Value}\:{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosh}\:{x}−\mathrm{cos}\:{x}}{{x}\mathrm{sin}\:{x}}\:=? \\ $$

Question Number 57997    Answers: 0   Comments: 2

find all second order partial derivatives f(x,y)=xe^x^y .y^x

$${find}\:{all}\:{second}\:{order}\:{partial} \\ $$$${derivatives} \\ $$$${f}\left({x},{y}\right)={xe}^{{x}^{{y}} } .{y}^{{x}} \\ $$

Question Number 57992    Answers: 1   Comments: 0

Question Number 57991    Answers: 0   Comments: 0

Question Number 57988    Answers: 0   Comments: 5

list all subset of {2,4,6,7,8}

$${list}\:{all}\:{subset}\:{of}\: \\ $$$$\left\{\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{8}\right\} \\ $$

Question Number 57985    Answers: 2   Comments: 0

Find the number of integer solutions for a×b×c×d=18900 with a,b,c,d≥1.

$${Find}\:{the}\:{number}\:{of}\:{integer}\:{solutions} \\ $$$${for}\:{a}×{b}×{c}×{d}=\mathrm{18900} \\ $$$${with}\:{a},{b},{c},{d}\geqslant\mathrm{1}. \\ $$

Question Number 57984    Answers: 0   Comments: 0

Question Number 58045    Answers: 1   Comments: 0

(x+1)^4 <5x^3 +21x^2 +17x+61 find the root x?

$$\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{4}} <\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{21}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{17}\boldsymbol{\mathrm{x}}+\mathrm{61} \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{root}}\:\:\:\boldsymbol{\mathrm{x}}? \\ $$

Question Number 57977    Answers: 0   Comments: 0

2[(4×5)−(4×3)]=2×[20−(4×3)]=2×[(20−12)]=2×8=16

$$\mathrm{2}\left[\left(\mathrm{4}×\mathrm{5}\right)−\left(\mathrm{4}×\mathrm{3}\right)\right]=\mathrm{2}×\left[\mathrm{20}−\left(\mathrm{4}×\mathrm{3}\right)\right]=\mathrm{2}×\left[\left(\mathrm{20}−\mathrm{12}\right)\right]=\mathrm{2}×\mathrm{8}=\mathrm{16} \\ $$

Question Number 57960    Answers: 1   Comments: 0

Find maximum n such that 12^n divides 100!.

$${Find}\:{maximum}\:{n}\:{such}\:{that}\:\mathrm{12}^{{n}} \:{divides} \\ $$$$\mathrm{100}!. \\ $$

Question Number 57959    Answers: 1   Comments: 0

Question Number 57958    Answers: 1   Comments: 0

Question Number 57957    Answers: 0   Comments: 2

Question Number 57955    Answers: 1   Comments: 1

Question Number 57953    Answers: 0   Comments: 0

It is requested to all who post question...pls 1)post physics question with diagram. 2)pls post geometry/co ordinate geometry queztions with diagram as mentioned in source. 3)pls post question in details as mentioned in the source. 4)pls post question along with the answer not in details but the answer only.

$${It}\:{is}\:{requested}\:{to}\:{all}\:{who}\:{post}\:{question}...{pls} \\ $$$$ \\ $$$$\left.\mathrm{1}\right){post}\:{physics}\:{question}\:{with}\:{diagram}. \\ $$$$\left.\mathrm{2}\right){pls}\:{post}\:{geometry}/{co}\:{ordinate}\:{geometry}\:{queztions} \\ $$$${with}\:{diagram}\:{as}\:{mentioned}\:{in}\:{source}. \\ $$$$\left.\mathrm{3}\right){pls}\:{post}\:{question}\:{in}\:{details}\:{as}\:{mentioned} \\ $$$$\:{in}\:{the}\:{source}. \\ $$$$\left.\mathrm{4}\right){pls}\:{post}\:{question}\:{along}\:{with}\:{the}\:{answer}\:{not} \\ $$$${in}\:{details}\:{but}\:{the}\:{answer}\:{only}. \\ $$$$ \\ $$

Question Number 57952    Answers: 1   Comments: 0

An irregular 6 faced die is thrown and the expectation that in 10 throws it will give five even numbers is twice the expectation that it will give four even numbers.How many times in 15000 sets of 10 throws would you expect it to give one even number?

$${An}\:{irregular}\:\mathrm{6}\:{faced}\:{die}\:{is}\:{thrown}\:{and} \\ $$$${the}\:{expectation}\:{that}\:{in}\:\mathrm{10}\:{throws}\:{it}\:{will} \\ $$$${give}\:{five}\:{even}\:{numbers}\:{is}\:{twice}\:{the} \\ $$$${expectation}\:{that}\:{it}\:{will}\:{give}\:{four}\:{even} \\ $$$${numbers}.{How}\:{many}\:{times}\:{in}\:\mathrm{15000} \\ $$$${sets}\:{of}\:\mathrm{10}\:{throws}\:{would}\:{you}\:{expect}\:{it} \\ $$$${to}\:{give}\:{one}\:{even}\:{number}? \\ $$

Question Number 57949    Answers: 0   Comments: 0

(0,i,j) is orthonormal A and B are two points wich verify AB =3 find the locus of point M wich verify MA +MB =6

$$\left(\mathrm{0},{i},{j}\right)\:{is}\:{orthonormal}\:\:\:{A}\:{and}\:\:{B}\:{are}\:{two}\:{points}\:{wich}\:{verify}\:{AB}\:=\mathrm{3} \\ $$$${find}\:\:{the}\:{locus}\:{of}\:{point}\:{M}\:{wich}\:{verify}\:\:{MA}\:+{MB}\:=\mathrm{6}\: \\ $$

Question Number 57948    Answers: 0   Comments: 0

let A(ξ) =∫_ξ ^ξ^2 ((arctan(1+ξt)−(π/4))/((√(2+ξt))−(√(2−ξt)))) dt find lim_(ξ →0) A(ξ) .

$${let}\:{A}\left(\xi\right)\:=\int_{\xi} ^{\xi^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left(\mathrm{1}+\xi{t}\right)−\frac{\pi}{\mathrm{4}}}{\sqrt{\mathrm{2}+\xi{t}}−\sqrt{\mathrm{2}−\xi{t}}}\:{dt} \\ $$$${find}\:{lim}_{\xi\:\rightarrow\mathrm{0}} \:\:{A}\left(\xi\right)\:. \\ $$$$ \\ $$

Question Number 57947    Answers: 0   Comments: 0

let P(x)=(1+ix)^n −1−ni with x real and n integr natural 1) find the roots of P(x) 2) factorize P(x) inside C[x] 3) factorize P(x) inside R[x] 4) decompose the fraction F(x) =((P^((1)) (x))/(P(x))) inside C(x) P^((1)) is the derivative of P .

$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} −\mathrm{1}−{ni}\:\:\:\:{with}\:{x}\:{real}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{R}\left[{x}\right] \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)\:=\frac{{P}^{\left(\mathrm{1}\right)} \left({x}\right)}{{P}\left({x}\right)}\:{inside}\:{C}\left({x}\right) \\ $$$${P}^{\left(\mathrm{1}\right)} \:{is}\:{the}\:{derivative}\:{of}\:{P}\:. \\ $$

Question Number 57946    Answers: 0   Comments: 0

Question Number 57938    Answers: 0   Comments: 0

  Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516      Pg 1517   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com