Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1512

Question Number 58097    Answers: 2   Comments: 0

Find the angle between the curves: 1)x^2 y=1−y and x^3 =2−2y. 2) x^2 +y^2 =a^2 (√2) and x^2 −y^2 =a^2 .

$${Find}\:{the}\:{angle}\:{between}\:{the}\:{curves}: \\ $$$$\left.\mathrm{1}\right){x}^{\mathrm{2}} {y}=\mathrm{1}−{y}\:{and}\:{x}^{\mathrm{3}} =\mathrm{2}−\mathrm{2}{y}. \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \sqrt{\mathrm{2}}\:{and}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={a}^{\mathrm{2}} . \\ $$

Question Number 58092    Answers: 3   Comments: 0

6x^3 +5x^2 −6x−5=0

$$\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{5}=\mathrm{0} \\ $$

Question Number 58091    Answers: 2   Comments: 0

27x^(3−1=0)

$$\mathrm{27}{x}^{\mathrm{3}−\mathrm{1}=\mathrm{0}} \\ $$

Question Number 58090    Answers: 1   Comments: 0

(x^4 −x^3 −38x^2 −31x+45)÷(x+5)

$$\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{38}{x}^{\mathrm{2}} −\mathrm{31}{x}+\mathrm{45}\right)\boldsymbol{\div}\left({x}+\mathrm{5}\right) \\ $$

Question Number 58084    Answers: 0   Comments: 3

Question Number 58079    Answers: 1   Comments: 0

f(x)=2^3 +x^2 −5x+2;x+2

$${f}\left({x}\right)=\mathrm{2}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{2};{x}+\mathrm{2} \\ $$

Question Number 58077    Answers: 1   Comments: 0

(3/(10))×2

$$\frac{\mathrm{3}}{\mathrm{10}}×\mathrm{2} \\ $$

Question Number 58076    Answers: 2   Comments: 1

a^x =m ⇒log_a m = x So is following true i^2 =−1 log_i (−1)=2

$$\:{a}^{{x}} ={m} \\ $$$$\Rightarrow\mathrm{log}_{{a}} {m}\:=\:{x} \\ $$$${So}\:{is}\:{following}\:{true} \\ $$$${i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\mathrm{log}_{{i}} \left(−\mathrm{1}\right)=\mathrm{2}\: \\ $$

Question Number 58060    Answers: 0   Comments: 3

Having given log 2 = 0.30103, find the position of the first significant figure in 2^(−37) .

$${Having}\:{given}\:\mathrm{log}\:\mathrm{2}\:=\:\mathrm{0}.\mathrm{30103},\:{find}\:{the}\:{position} \\ $$$${of}\:{the}\:{first}\:{significant}\:{figure}\:{in}\:\mathrm{2}^{−\mathrm{37}} . \\ $$

Question Number 58056    Answers: 1   Comments: 0

If the constant forces 2i−5j+6k and −i+2j−k act on a particle due to which it is displaced from a point A(4,−3,−2) to a point B(6, 1,−3), then the work done by the forces is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{forces}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{5}\boldsymbol{\mathrm{j}}+\mathrm{6}\boldsymbol{\mathrm{k}}\:\mathrm{and} \\ $$$$−\boldsymbol{\mathrm{i}}+\mathrm{2}\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}}\:\mathrm{act}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{due}\:\mathrm{to}\:\mathrm{which} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{displaced}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:{A}\left(\mathrm{4},−\mathrm{3},−\mathrm{2}\right) \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{point}\:{B}\left(\mathrm{6},\:\mathrm{1},−\mathrm{3}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{work}\: \\ $$$$\mathrm{done}\:\mathrm{by}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{is} \\ $$

Question Number 58055    Answers: 1   Comments: 0

If the constant forces 2i−5j+6k and −i+2j−k act on a particle due to which it is displaced from a point A(4,−3,−2) to a point B(6, 1,−3), then the work done by the forces is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{forces}\:\mathrm{2}\boldsymbol{\mathrm{i}}−\mathrm{5}\boldsymbol{\mathrm{j}}+\mathrm{6}\boldsymbol{\mathrm{k}}\:\mathrm{and} \\ $$$$−\boldsymbol{\mathrm{i}}+\mathrm{2}\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}}\:\mathrm{act}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{due}\:\mathrm{to}\:\mathrm{which} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{displaced}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:{A}\left(\mathrm{4},−\mathrm{3},−\mathrm{2}\right) \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{point}\:{B}\left(\mathrm{6},\:\mathrm{1},−\mathrm{3}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{work}\: \\ $$$$\mathrm{done}\:\mathrm{by}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{is} \\ $$

Question Number 58051    Answers: 1   Comments: 0

Question Number 58050    Answers: 1   Comments: 0

Question Number 58049    Answers: 0   Comments: 0

Question Number 58046    Answers: 2   Comments: 0

3x^4 −4x^3 −7x^2 −4x+5=0 x=?

$$\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{7}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}+\mathrm{5}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 58043    Answers: 0   Comments: 1

how can i use the equation i created in app in power point?

$${how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{use}\:\mathrm{the}\:\mathrm{equation}\:{i}\:{created}\:{in}\:{app}\:{in}\:\mathrm{po}{wer}\:{point}? \\ $$

Question Number 58069    Answers: 1   Comments: 4

Between 100 and 600, how many number are such which are totally divisible by 11 or 17.

$${Between}\:\mathrm{100}\:{and}\:\mathrm{600},\:{how}\:{many}\:{number} \\ $$$${are}\:{such}\:{which}\:{are}\:{totally}\:{divisible}\:{by}\:\mathrm{11}\:{or}\:\mathrm{17}. \\ $$

Question Number 58067    Answers: 0   Comments: 1

Question Number 58027    Answers: 1   Comments: 0

Question Number 58025    Answers: 1   Comments: 1

Trace the changes in the sign and magnitude of ((sin 3θ)/(cos 2θ)) as the angle increases from 0 to (π/2). also find its minimum and maximum values.

$${Trace}\:{the}\:{changes}\:{in}\:{the}\:{sign}\:{and}\:{magnitude} \\ $$$${of}\:\:\frac{\mathrm{sin}\:\mathrm{3}\theta}{\mathrm{cos}\:\mathrm{2}\theta}\:{as}\:{the}\:{angle}\:{increases}\:{from}\:\mathrm{0}\:{to}\:\frac{\pi}{\mathrm{2}}. \\ $$$${also}\:{find}\:{its}\:{minimum}\:{and}\:{maximum}\:{values}. \\ $$

Question Number 58016    Answers: 2   Comments: 1

Value of lim_(x→0) ((cosh x−cos x)/(xsin x)) =?

$${Value}\:{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosh}\:{x}−\mathrm{cos}\:{x}}{{x}\mathrm{sin}\:{x}}\:=? \\ $$

Question Number 57997    Answers: 0   Comments: 2

find all second order partial derivatives f(x,y)=xe^x^y .y^x

$${find}\:{all}\:{second}\:{order}\:{partial} \\ $$$${derivatives} \\ $$$${f}\left({x},{y}\right)={xe}^{{x}^{{y}} } .{y}^{{x}} \\ $$

Question Number 57992    Answers: 1   Comments: 0

Question Number 57991    Answers: 0   Comments: 0

Question Number 57988    Answers: 0   Comments: 5

list all subset of {2,4,6,7,8}

$${list}\:{all}\:{subset}\:{of}\: \\ $$$$\left\{\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{8}\right\} \\ $$

Question Number 57985    Answers: 2   Comments: 0

Find the number of integer solutions for a×b×c×d=18900 with a,b,c,d≥1.

$${Find}\:{the}\:{number}\:{of}\:{integer}\:{solutions} \\ $$$${for}\:{a}×{b}×{c}×{d}=\mathrm{18900} \\ $$$${with}\:{a},{b},{c},{d}\geqslant\mathrm{1}. \\ $$

  Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515      Pg 1516   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com