Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1512
Question Number 59059 Answers: 0 Comments: 0
Question Number 59058 Answers: 2 Comments: 1
Question Number 59053 Answers: 0 Comments: 0
$${f}={v} \\ $$$${v}=\mathrm{47}×\mathrm{48} \\ $$$${f}=? \\ $$
Question Number 59052 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\theta\:+{xsin}\theta\right){d}\theta\:\:\:{with}\:{x}\:{fromR} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\theta\:+{sin}\theta\right)\:{d}\theta\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\theta\:+\mathrm{2}{sin}\theta\right){d}\theta\:. \\ $$
Question Number 59050 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\: \\ $$
Question Number 59049 Answers: 0 Comments: 1
$$\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}\:\mathrm{log}\:{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:= \\ $$
Question Number 59040 Answers: 3 Comments: 0
$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{sin}\:^{\mathrm{4}} {x}}{dx}\:=\:? \\ $$
Question Number 59023 Answers: 0 Comments: 0
$${please}\:{solve}\:{my}\:{quens} \\ $$
Question Number 59021 Answers: 2 Comments: 10
$$\left[{Q}\mathrm{58885}\:{reposted}\right] \\ $$$${How}\:{many}\:\mathrm{4}−{digit}\:{numbers}\:{abcd}\:{exist} \\ $$$${which}\:{are}\:{divisible}\:{by}\:\mathrm{3}\:{and}\:{satisfy} \\ $$$${a}\leqslant{b}\leqslant{c}\leqslant{d}? \\ $$
Question Number 59018 Answers: 0 Comments: 1
Question Number 59012 Answers: 3 Comments: 0
Question Number 59006 Answers: 0 Comments: 1
$${probar}\:{con}\:{h}\neq\mathrm{0} \\ $$$$\frac{{sin}\left({x}+{h}\right)−{sin}\left({x}\right)}{{h}}=\frac{{sin}\left({h}/\mathrm{2}\right)}{{h}/\mathrm{2}}{cos}\left({x}+\frac{{h}}{\mathrm{2}}\right) \\ $$$$ \\ $$
Question Number 59003 Answers: 0 Comments: 0
Question Number 59002 Answers: 0 Comments: 0
Question Number 59000 Answers: 1 Comments: 0
Question Number 58986 Answers: 1 Comments: 3
Question Number 58984 Answers: 1 Comments: 0
$$\mathrm{ABCD}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{square},\:\mathrm{AC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diagonal}.\:\mathrm{If}\:\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\:\mathrm{A},\:\mathrm{C} \\ $$$$\mathrm{are}\:\:\left(−\:\mathrm{5},\:\mathrm{8}\right)\:\mathrm{and}\:\left(\mathrm{7},\:−\:\mathrm{4}\right)\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\:\mathrm{B}\:\mathrm{and}\:\mathrm{D}. \\ $$
Question Number 58979 Answers: 1 Comments: 1
Question Number 58974 Answers: 1 Comments: 0
Question Number 58972 Answers: 0 Comments: 0
Question Number 58971 Answers: 1 Comments: 1
Question Number 58965 Answers: 0 Comments: 0
$$\mathrm{if}\:{a},{b}\:\in\mathbb{C}\:\mid\:\mid{a}\mid<\mathrm{1},\mid{b}\mid<\mathrm{1} \\ $$$$\Rightarrow\mid\frac{{a}−{b}}{\mathrm{1}−\bar {{a}b}}\mid<\overset{} {\mathrm{1}} \\ $$
Question Number 58964 Answers: 1 Comments: 0
$${a}\:+\:{b}\:+\:{c}\:\:=\:\:\mathrm{1} \\ $$$${a},\:{b},\:{c}\:\:\leqslant\:\:\mathrm{1} \\ $$$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:+\:\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:+\:\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:\leqslant\:\:\frac{\mathrm{27}}{\mathrm{10}} \\ $$
Question Number 58963 Answers: 1 Comments: 0
$${solve}\:{x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+{i}\right){x}−\mathrm{5}+\mathrm{14}{i}=\mathrm{0} \\ $$
Question Number 58962 Answers: 0 Comments: 0
$${you}\:{are}\:{welcome}\:{sir}. \\ $$
Question Number 59037 Answers: 0 Comments: 1
$${solve}\:\:\frac{{dy}}{{dt}}={t}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Pg 1507 Pg 1508 Pg 1509 Pg 1510 Pg 1511 Pg 1512 Pg 1513 Pg 1514 Pg 1515 Pg 1516
Terms of Service
Privacy Policy
Contact: info@tinkutara.com