Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1511

Question Number 58195    Answers: 2   Comments: 0

(1/x)+(1/y)=(3/4) (x^2 /y)+(y^2 /x)=9 find the value of x and y

$$\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{9} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$

Question Number 58193    Answers: 0   Comments: 0

If z ∈ C such that R(z^n )>0 for n∈N^+ . Show that z ∈R^+ .

$$\mathrm{If}\:{z}\:\in\:\mathbb{C}\:\:\mathrm{such}\:\mathrm{that}\:\mathfrak{R}\left({z}^{{n}} \right)>\mathrm{0}\:\mathrm{for}\:{n}\in\mathbb{N}^{+} . \\ $$$$\mathrm{Show}\:\mathrm{that}\:{z}\:\in\mathbb{R}^{+} . \\ $$

Question Number 58187    Answers: 0   Comments: 0

let f(x) =∫_1 ^3 arctan(x+(x/t))dt withx>0 1) determine a explicit form of f(x) 2) give f^′ (x) at form of integral and find its value 3) calculate ∫_1 ^3 arctan(1+(1/t))dt and ∫_1 ^3 arctan(2+(2/t))dt . 4) calculate ∫_1 ^3 (2t−1)arctan(1+(1/t))dt .

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left({x}+\frac{{x}}{{t}}\right){dt}\:\:\:{withx}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{give}\:{f}^{'} \left({x}\right)\:{at}\:{form}\:{of}\:{integral}\:{and}\:{find}\:{its}\:{value} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt}\:\:\:{and}\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:{arctan}\left(\mathrm{2}+\frac{\mathrm{2}}{{t}}\right){dt}\:. \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\left(\mathrm{2}{t}−\mathrm{1}\right){arctan}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt}\:. \\ $$

Question Number 58185    Answers: 0   Comments: 0

find ∫ ((xdx)/(cosx +sin(2x)))

$${find}\:\int\:\:\:\frac{{xdx}}{{cosx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 58184    Answers: 0   Comments: 0

find ∫ ((xdx)/(sinx +cos(2x)))

$${find}\:\:\int\:\:\:\:\:\:\frac{{xdx}}{{sinx}\:+{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 58178    Answers: 0   Comments: 0

Question Number 58177    Answers: 2   Comments: 0

cos^(−1) (1/2) + 2 sin^(−1) (1/2) =

$$\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:\:= \\ $$

Question Number 58176    Answers: 1   Comments: 0

If x_1 , x_2 , x_3 , x_4 are roots of the equation x^4 −x^3 sin 2β+x^2 cos 2β−x cos β−sin β=0, then tan^(−1) x_1 +tan^(−1) x_2 +tan^(−1) x_3 +tan^(−1) x_4 =

$$\mathrm{If}\:\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} ,\:{x}_{\mathrm{4}} \:\:\mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} \mathrm{sin}\:\mathrm{2}\beta+{x}^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\beta−{x}\:\mathrm{cos}\:\beta−\mathrm{sin}\:\beta=\mathrm{0}, \\ $$$$\mathrm{then} \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{1}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{2}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{3}} +\mathrm{tan}^{−\mathrm{1}} {x}_{\mathrm{4}} = \\ $$

Question Number 58175    Answers: 1   Comments: 0

The value of sin(π+θ) sin(π−θ) cosec^2 θ is equal to

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\left(\pi+\theta\right)\:\mathrm{sin}\left(\pi−\theta\right)\:\mathrm{cosec}^{\mathrm{2}} \theta \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 58174    Answers: 0   Comments: 2

Four digit integers are taken at random and are multiplied together. Then the probability that only one of them will be alive at the end of the year is

$$\mathrm{Four}\:\mathrm{digit}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{taken}\:\mathrm{at}\:\mathrm{random} \\ $$$$\mathrm{and}\:\mathrm{are}\:\mathrm{multiplied}\:\mathrm{together}.\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{only}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{alive}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{year}\:\mathrm{is} \\ $$

Question Number 58171    Answers: 1   Comments: 0

a particle of mass m kg is moving along a smooth wire that is fixed in a plane. The polar equation of the wire is r = ae^(3θ) . The particle moves with a cons tant velocity of 6. At time t = 0 , the par ticle is at the point with polar equation (a,θ) a)Find the transverse and radial compo nents of the acceleration of the particle in terms of a and t. b) the resultant force on the particle is F. Show that the magnitude of F at time t is 360mae^(18t)

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along} \\ $$$$\mathrm{a}\:\mathrm{smooth}\:\mathrm{wire}\:\mathrm{that}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}. \\ $$$$\mathrm{The}\:\mathrm{polar}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}\:\:\mathrm{is}\: \\ $$$$\mathrm{r}\:=\:\mathrm{ae}^{\mathrm{3}\theta} .\:\mathrm{The}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{cons} \\ $$$$\mathrm{tant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{6}.\:\mathrm{At}\:\mathrm{time}\:\:\mathrm{t}\:=\:\mathrm{0}\:,\:\mathrm{the}\:\mathrm{par} \\ $$$$\mathrm{ticle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{with}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\left(\mathrm{a},\theta\right) \\ $$$$\left.\mathrm{a}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{transverse}\:\mathrm{and}\:\mathrm{radial}\:\mathrm{compo} \\ $$$$\mathrm{nents}\:\mathrm{of}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{t}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{F}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{F}\:\mathrm{at}\:\mathrm{time} \\ $$$$\mathrm{t}\:\mathrm{is}\:\mathrm{360mae}^{\mathrm{18t}} \\ $$

Question Number 58168    Answers: 2   Comments: 0

find ∫ ((√(tanx))/(sin(2x)))dx

$${find}\:\int\:\:\:\:\frac{\sqrt{{tanx}}}{{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Question Number 58156    Answers: 1   Comments: 0

Jaiden buys 334 cupcakes.He got 14 more cupcakes.How many cupcakes did he got altogether?

$$\mathrm{Jaiden}\:\mathrm{buys}\:\mathrm{334}\:\mathrm{cupcakes}.\mathrm{He}\:\mathrm{got}\:\mathrm{14}\:\mathrm{more}\:\mathrm{cupcakes}.\mathrm{How}\:\mathrm{many}\:\mathrm{cupcakes}\:\mathrm{did}\:\mathrm{he}\:\mathrm{got}\:\mathrm{altogether}? \\ $$

Question Number 58154    Answers: 1   Comments: 0

A(1,1+i),B((√2)+i,2),C(1−3i,1−i) are given. find angle between: AB and AC .

$$\boldsymbol{\mathrm{A}}\left(\mathrm{1},\mathrm{1}+\boldsymbol{\mathrm{i}}\right),\boldsymbol{\mathrm{B}}\left(\sqrt{\mathrm{2}}+\boldsymbol{\mathrm{i}},\mathrm{2}\right),\boldsymbol{\mathrm{C}}\left(\mathrm{1}−\mathrm{3}\boldsymbol{\mathrm{i}},\mathrm{1}−\boldsymbol{\mathrm{i}}\right) \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{between}}:\:\:\boldsymbol{\mathrm{AB}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{AC}}\:. \\ $$

Question Number 58153    Answers: 1   Comments: 0

arctan((√2)−i)=? [i=(√(−1))]

$$\boldsymbol{\mathrm{arctan}}\left(\sqrt{\mathrm{2}}−\boldsymbol{\mathrm{i}}\right)=?\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{i}}=\sqrt{−\mathrm{1}}\right] \\ $$

Question Number 58145    Answers: 1   Comments: 0

how to factorize a^3 b^2 +a^2 b^3

$${how}\:{to}\:{factorize} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{3}} \: \\ $$

Question Number 58135    Answers: 1   Comments: 0

Question Number 58132    Answers: 2   Comments: 1

Question Number 58113    Answers: 0   Comments: 1

once sgain: it′s boring to solve questions of minor complexity. we don′t have to, we do it to help unexperienced people to grow. you could at least type “thanks”. otherwise you might be ignored after a while...

$$\mathrm{once}\:\mathrm{sgain}:\:\mathrm{it}'\mathrm{s}\:\mathrm{boring}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{of} \\ $$$$\mathrm{minor}\:\mathrm{complexity}.\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to},\:\mathrm{we}\:\mathrm{do} \\ $$$$\mathrm{it}\:\mathrm{to}\:\mathrm{help}\:\mathrm{unexperienced}\:\mathrm{people}\:\mathrm{to}\:\mathrm{grow}. \\ $$$$\mathrm{you}\:\mathrm{could}\:\mathrm{at}\:\mathrm{least}\:\mathrm{type}\:``\mathrm{thanks}''.\:\mathrm{otherwise} \\ $$$$\mathrm{you}\:\mathrm{might}\:\mathrm{be}\:\mathrm{ignored}\:\mathrm{after}\:\mathrm{a}\:\mathrm{while}... \\ $$

Question Number 58103    Answers: 1   Comments: 0

f(x)=−x^6 +3 x^4 + 4x^2 find the zeros

$${f}\left({x}\right)=−{x}^{\mathrm{6}} +\mathrm{3}\:{x}^{\mathrm{4}} \:+\:\mathrm{4}{x}^{\mathrm{2}} {find}\:{the}\:{zeros} \\ $$

Question Number 58097    Answers: 2   Comments: 0

Find the angle between the curves: 1)x^2 y=1−y and x^3 =2−2y. 2) x^2 +y^2 =a^2 (√2) and x^2 −y^2 =a^2 .

$${Find}\:{the}\:{angle}\:{between}\:{the}\:{curves}: \\ $$$$\left.\mathrm{1}\right){x}^{\mathrm{2}} {y}=\mathrm{1}−{y}\:{and}\:{x}^{\mathrm{3}} =\mathrm{2}−\mathrm{2}{y}. \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \sqrt{\mathrm{2}}\:{and}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={a}^{\mathrm{2}} . \\ $$

Question Number 58092    Answers: 3   Comments: 0

6x^3 +5x^2 −6x−5=0

$$\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{5}=\mathrm{0} \\ $$

Question Number 58091    Answers: 2   Comments: 0

27x^(3−1=0)

$$\mathrm{27}{x}^{\mathrm{3}−\mathrm{1}=\mathrm{0}} \\ $$

Question Number 58090    Answers: 1   Comments: 0

(x^4 −x^3 −38x^2 −31x+45)÷(x+5)

$$\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{38}{x}^{\mathrm{2}} −\mathrm{31}{x}+\mathrm{45}\right)\boldsymbol{\div}\left({x}+\mathrm{5}\right) \\ $$

Question Number 58084    Answers: 0   Comments: 3

Question Number 58079    Answers: 1   Comments: 0

f(x)=2^3 +x^2 −5x+2;x+2

$${f}\left({x}\right)=\mathrm{2}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{2};{x}+\mathrm{2} \\ $$

  Pg 1506      Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512      Pg 1513      Pg 1514      Pg 1515   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com