Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1510
Question Number 58941 Answers: 1 Comments: 0
$$\mathrm{6h}=\mathrm{30} \\ $$
Question Number 58940 Answers: 1 Comments: 3
$${e}^{{i}\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} {sinx}+\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right){dx}} +\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\int_{\mathrm{2}} ^{{x}} {log}\left({x}+\mathrm{8}\right){dx}}{{x}−\mathrm{2}}=? \\ $$
Question Number 58937 Answers: 0 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{2}} \underset{\frac{\mathrm{1}}{{n}}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{2}−{x}\right)\left({x}+{x}^{{n}} \right)}{\mathrm{1}+{x}^{{n}} }{dx}=\:? \\ $$
Question Number 58936 Answers: 1 Comments: 0
$$\mathrm{2}+\left\{\left[\mathrm{5}+\mathrm{6}\right]\right\}×\mathrm{2} \\ $$
Question Number 58934 Answers: 1 Comments: 0
$$\mathrm{856}×\mathrm{16} \\ $$
Question Number 58932 Answers: 0 Comments: 1
$$\mathrm{6h}=\mathrm{18} \\ $$
Question Number 58928 Answers: 0 Comments: 2
Question Number 58915 Answers: 2 Comments: 2
$$\mathrm{reposting}\:\mathrm{this}: \\ $$$${x}^{\mathrm{8}} −\mathrm{8}{x}^{\mathrm{7}} −\mathrm{16}{x}^{\mathrm{6}} +\mathrm{208}{x}^{\mathrm{5}} −\mathrm{152}{x}^{\mathrm{4}} −\mathrm{928}{x}^{\mathrm{3}} +\mathrm{704}{x}^{\mathrm{2}} +\mathrm{1088}{x}−\mathrm{368}=\mathrm{0} \\ $$$$\mathrm{nobody}\:\mathrm{wants}\:\mathrm{to}\:\mathrm{try}?\:\mathrm{it}'\mathrm{s}\:\mathrm{beautiful}... \\ $$
Question Number 58899 Answers: 1 Comments: 4
$$\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{for}\:\:\mathrm{x}:\:\:\:\:\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}} \:\:} =\:\:\mathrm{729} \\ $$
Question Number 58896 Answers: 2 Comments: 0
$$\left.\mathrm{11}\right)\:\:\mathrm{lg}_{\mathrm{4}} \mathrm{lg}_{\mathrm{4}} \mathrm{lg}_{\mathrm{2}} \mathrm{16}−\mathrm{lg}_{\mathrm{2}} \mathrm{lg}_{\mathrm{2}} \sqrt{\mathrm{3}} \\ $$$$\mathrm{12}.\:\left(\mathrm{5lg}_{\mathrm{3}} \mathrm{3}−\mathrm{lg}_{\mathrm{4}} \mathrm{1}\right)^{\mathrm{2}} +\frac{\frac{\mathrm{1}}{\mathrm{lg}_{\mathrm{2}} \mathrm{8}}×\mathrm{lg}_{\mathrm{3}} \mathrm{27}}{\mathrm{lg}_{\sqrt{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}}} \\ $$
Question Number 58885 Answers: 0 Comments: 2
$${How}\:\:{many}\:\:\mathrm{4}−{digits}\:\:{number}\:\:\:{abcd}\:\:\:{that} \\ $$$${satisfy}\:\:\:\:{a}\:\:\leqslant\:\:{b}\:\:\leqslant\:\:{c}\:\:\leqslant\:\:{d}\:\:\:\:{multiply}\:\:\:{of}\:\:\:\mathrm{3}\:.\: \\ $$
Question Number 58880 Answers: 0 Comments: 1
$${t}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:{t} \\ $$
Question Number 58879 Answers: 1 Comments: 0
Question Number 58877 Answers: 1 Comments: 2
Question Number 58876 Answers: 1 Comments: 4
Question Number 58862 Answers: 1 Comments: 0
$$\mathrm{2}^{\mathrm{x}+\mathrm{y}=} \mathrm{6}^{\mathrm{y}} \\ $$$$\mathrm{3}^{\mathrm{x}} =\mathrm{3}\left(\mathrm{2}^{\mathrm{y}−\mathrm{1}} \right) \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$
Question Number 58860 Answers: 0 Comments: 5
Question Number 58853 Answers: 1 Comments: 0
Question Number 58851 Answers: 0 Comments: 0
$$\mathrm{6}+\mathrm{2}×\mathrm{3} \\ $$
Question Number 58832 Answers: 2 Comments: 4
$$\mathrm{find}\:\mathrm{x}\:\mathrm{if}\:\mathrm{x}^{\mathrm{2}} =\mathrm{16}^{\mathrm{x}} \\ $$
Question Number 58827 Answers: 1 Comments: 3
$$\mathrm{Find}\:\:\sum_{\mathrm{x}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right) \\ $$$$ \\ $$
Question Number 58816 Answers: 2 Comments: 0
Question Number 58804 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}:\:\:\:\:\mathrm{4}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\mathrm{2} \\ $$
Question Number 58800 Answers: 2 Comments: 2
Question Number 58867 Answers: 0 Comments: 4
$$\mathrm{1}:\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:{sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{2}:\:\underset{{x}\rightarrow\infty} {{lim}}\:{sin}\left({x}\right) \\ $$
Question Number 58791 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\:\:\frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\:\:\:=\:\:\frac{\pi}{\mathrm{2}} \\ $$
Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509 Pg 1510 Pg 1511 Pg 1512 Pg 1513 Pg 1514
Terms of Service
Privacy Policy
Contact: info@tinkutara.com