Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1509

Question Number 49220    Answers: 0   Comments: 2

(1+x−2x^2 )^8 =?

$$\left(\mathrm{1}+\mathrm{x}−\mathrm{2x}^{\mathrm{2}} \:\right)^{\mathrm{8}} =? \\ $$

Question Number 49210    Answers: 0   Comments: 1

Question Number 49202    Answers: 2   Comments: 4

1) If ω is an imaginary fifth root of unity, then find value of log _2 ∣1+ω+ω^2 +ω^3 −(1/ω)∣ ? 2) Find value of : (i+(√3))^(100) +(i−(√3))^(100) +2^(100) ?

$$\left.\mathrm{1}\right)\:{If}\:\omega\:{is}\:{an}\:{imaginary}\:{fifth}\:{root}\:{of} \\ $$$${unity},\:{then}\:{find}\:{value}\:{of}\: \\ $$$$\mathrm{log}\:_{\mathrm{2}} \:\mid\mathrm{1}+\omega+\omega^{\mathrm{2}} +\omega^{\mathrm{3}} −\frac{\mathrm{1}}{\omega}\mid\:? \\ $$$$\left.\mathrm{2}\right)\:{Find}\:{value}\:{of}\:: \\ $$$$\left({i}+\sqrt{\mathrm{3}}\right)^{\mathrm{100}} +\left({i}−\sqrt{\mathrm{3}}\right)^{\mathrm{100}} +\mathrm{2}^{\mathrm{100}} \:? \\ $$

Question Number 49200    Answers: 2   Comments: 1

1)Find the area of the triangle formed by roots of cubic equation (z+αb)^3 =α^3_ (α≠0). 2) Find product of all possible values of ((1/2)+(((√3)i)/2))^(3/4) .

$$\left.\mathrm{1}\right){Find}\:{the}\:{area}\:{of}\:{the}\:{triangle}\:{formed} \\ $$$${by}\:{roots}\:{of}\:{cubic}\:{equation} \\ $$$$\left({z}+\alpha{b}\right)^{\mathrm{3}} =\alpha^{\mathrm{3}_{} } \:\:\left(\alpha\neq\mathrm{0}\right). \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{Find}\:{product}\:{of}\:{all}\:{possible}\:{values} \\ $$$${of}\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \:. \\ $$

Question Number 49197    Answers: 0   Comments: 1

A bus travelling along a straight road at 100 km/hr and the bus conductor walks at 6 km/hr on the floor of the bus and in the same direction as the bus. Find the speed of the conductor relative to the road, and relative to the bus. If the bus conductor now walks at the same rate but in opposite direction as the bus, find his new speed relative to the road. Answers 106 km/hr , 64 km/hr , 94 km/hr

$$\mathrm{A}\:\mathrm{bus}\:\mathrm{travelling}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{road}\:\mathrm{at}\:\mathrm{100}\:\mathrm{km}/\mathrm{hr}\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{bus}\: \\ $$$$\mathrm{conductor}\:\mathrm{walks}\:\mathrm{at}\:\mathrm{6}\:\mathrm{km}/\mathrm{hr}\:\mathrm{on}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bus}\:\mathrm{and}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conductor}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road},\:\mathrm{and}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{bus}.\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{bus}\:\mathrm{conductor}\:\mathrm{now}\:\mathrm{walks}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{rate}\:\mathrm{but}\:\mathrm{in}\:\mathrm{opposite} \\ $$$$\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus},\:\:\mathrm{find}\:\mathrm{his}\:\mathrm{new}\:\mathrm{speed}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road}. \\ $$$$ \\ $$$$\mathrm{Answers} \\ $$$$\mathrm{106}\:\mathrm{km}/\mathrm{hr}\:,\:\:\:\:\:\:\mathrm{64}\:\mathrm{km}/\mathrm{hr}\:,\:\:\:\:\:\:\:\:\:\mathrm{94}\:\mathrm{km}/\mathrm{hr} \\ $$

Question Number 49188    Answers: 1   Comments: 1

solve for x,y,z∈R. x^2 +yz=1 y^2 +xz=2 z^2 +xy=3

$${solve}\:{for}\:{x},{y},{z}\in{R}. \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{yz}}=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{xz}}=\mathrm{2} \\ $$$$\boldsymbol{\mathrm{z}}^{\mathrm{2}} +\boldsymbol{\mathrm{xy}}=\mathrm{3} \\ $$

Question Number 49187    Answers: 2   Comments: 0

∫((sinx)/(sin4x))dx

$$\int\frac{{sinx}}{{sin}\mathrm{4}{x}}{dx} \\ $$$$ \\ $$

Question Number 49186    Answers: 1   Comments: 4

please help... There is : 21x^2 − 21p x + 49p − 7 = 0 whose roots u and v. If u and v are not ∈Z , and u,v ≥ 1. find the value of u + v !

$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{help}}... \\ $$$$ \\ $$$$\mathrm{There}\:\mathrm{is}\::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{21}\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{21}\boldsymbol{{p}}\:\boldsymbol{{x}}\:+\:\mathrm{49}\boldsymbol{{p}}\:−\:\mathrm{7}\:=\:\mathrm{0} \\ $$$$\mathrm{whose}\:\mathrm{roots}\:\boldsymbol{{u}}\:\mathrm{and}\:\boldsymbol{{v}}.\:\mathrm{If}\:\boldsymbol{{u}}\:\mathrm{and}\:\boldsymbol{{v}}\:\mathrm{are}\:\mathrm{not}\:\in\mathbb{Z}\:,\: \\ $$$$\mathrm{and}\:\boldsymbol{{u}},\boldsymbol{{v}}\:\geqslant\:\mathrm{1}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{u}}\:+\:\boldsymbol{{v}}\:! \\ $$$$ \\ $$

Question Number 49183    Answers: 1   Comments: 3

Question Number 49177    Answers: 1   Comments: 0

If ∣z_1 −z_2 ∣ = ∣z_1 ∣+∣z_2 ∣ , then prove that arg((z_1 /z_2 ))=π .

$${If}\:\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{1}} \mid+\mid{z}_{\mathrm{2}} \mid\:,\:{then}\:{prove}\: \\ $$$${that}\:{arg}\left(\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }\right)=\pi\:. \\ $$

Question Number 49169    Answers: 1   Comments: 0

Find the least positive integer n such that (((2i)/(1+i)))^n is a +ve integer ?

$${Find}\:{the}\:{least}\:{positive}\:{integer}\:{n}\:{such} \\ $$$${that}\:\left(\frac{\mathrm{2}{i}}{\mathrm{1}+{i}}\right)^{{n}} {is}\:{a}\:+{ve}\:{integer}\:? \\ $$

Question Number 49174    Answers: 1   Comments: 1

If z_1 ,z_2 and z_3 ,z_(4 ) are two pairs of conjugate complex numbers , then find value of arg((z_1 /z_4 ))+arg((z_2 /z_3 )) ?

$${If}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} \:{and}\:{z}_{\mathrm{3}} ,{z}_{\mathrm{4}\:} {are}\:{two}\:{pairs}\:{of}\: \\ $$$${conjugate}\:{complex}\:{numbers}\:,\:{then}\: \\ $$$${find}\:{value}\:{of}\:{arg}\left(\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{4}} }\right)+{arg}\left(\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }\right)\:? \\ $$

Question Number 49151    Answers: 1   Comments: 0

Let z is complex number satisfying the equation z^2 −(3+i)z+m+2i=0, where mεR. Suppose the equation has a real root, then find the non real root?

$${Let}\:{z}\:{is}\:{complex}\:{number}\:{satisfying} \\ $$$${the}\:{equation}\:{z}^{\mathrm{2}} −\left(\mathrm{3}+{i}\right){z}+{m}+\mathrm{2}{i}=\mathrm{0}, \\ $$$${where}\:{m}\epsilon{R}.\:{Suppose}\:{the}\:{equation} \\ $$$${has}\:{a}\:{real}\:{root},\:{then}\:{find}\:{the}\:{non}\:{real}\:{root}? \\ $$

Question Number 49150    Answers: 0   Comments: 0

F=G((m_1 m_2 )/r^2 ) Explain this formula

$${F}={G}\frac{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }{{r}^{\mathrm{2}} } \\ $$$${Explain}\:{this}\:{formula} \\ $$

Question Number 49148    Answers: 1   Comments: 2

Question Number 49147    Answers: 1   Comments: 0

Question Number 49144    Answers: 0   Comments: 2

∫(1/(x^n +1))dx=??

$$\int\frac{\mathrm{1}}{{x}^{{n}} +\mathrm{1}}{dx}=?? \\ $$

Question Number 49142    Answers: 1   Comments: 0

ln(∞)=?? ln(0)=?? ln(−1)=??

$${ln}\left(\infty\right)=?? \\ $$$${ln}\left(\mathrm{0}\right)=?? \\ $$$${ln}\left(−\mathrm{1}\right)=?? \\ $$

Question Number 49134    Answers: 1   Comments: 0

∫(1/(x^(1/6) +x^(1/3) ))dx=??

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{6}} +{x}^{\mathrm{1}/\mathrm{3}} }{dx}=?? \\ $$

Question Number 49133    Answers: 1   Comments: 1

∫(1/(x^5 +1))dx=??

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{1}}{dx}=?? \\ $$

Question Number 49130    Answers: 0   Comments: 0

Question Number 49129    Answers: 0   Comments: 1

Question Number 49126    Answers: 1   Comments: 1

prouve it existe 4 intergers a b c and d such n^2 −2 divise a^4 +b^4 +c^4 +d^4

$${prouve}\:{it}\:{existe}\:\mathrm{4}\:{intergers}\:{a}\:{b}\:{c}\:\:{and}\:\:{d}\:{such}\:{n}^{\mathrm{2}} −\mathrm{2}\:\:{divise}\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +{d}^{\mathrm{4}} \\ $$

Question Number 49123    Answers: 1   Comments: 1

If a^3 −a−1=0 then find the valueof a^4 +a^3 −a^2 −2a+1

$$\mathrm{If} \\ $$$$\mathrm{a}^{\mathrm{3}} −\mathrm{a}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{valueof} \\ $$$$\mathrm{a}^{\mathrm{4}} +\mathrm{a}^{\mathrm{3}} −\mathrm{a}^{\mathrm{2}} −\mathrm{2a}+\mathrm{1} \\ $$

Question Number 49121    Answers: 1   Comments: 0

Question Number 49118    Answers: 1   Comments: 0

Given that the equation 3x^2 +mx+n=0 has roots α + (1/β) and β + (1/(α )) find the value of m and n

$${Given}\:{that}\:{the}\:{equation}\:\:\mathrm{3}{x}^{\mathrm{2}} +{mx}+{n}=\mathrm{0}\:{has}\:{roots}\:\alpha\:+\:\frac{\mathrm{1}}{\beta}\:{and} \\ $$$$\beta\:+\:\frac{\mathrm{1}}{\alpha\:}\:{find}\:{the}\:{value}\:{of}\:\:{m}\:{and}\:{n} \\ $$$$ \\ $$

  Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512      Pg 1513   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com