Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1508

Question Number 54176    Answers: 0   Comments: 0

what is the integral vslue of ∫x!dx

$${what}\:{is}\:{the}\:{integral}\:{vslue}\:{of}\:\int{x}!{dx} \\ $$

Question Number 54170    Answers: 1   Comments: 1

Question Number 54167    Answers: 1   Comments: 2

Question Number 54163    Answers: 0   Comments: 1

Question Number 54160    Answers: 1   Comments: 1

Question Number 54156    Answers: 0   Comments: 1

Please sirs, How is, − cot(α) = tan((1/2)π + α) ????

$$\mathrm{Please}\:\mathrm{sirs},\:\:\mathrm{How}\:\mathrm{is},\:\:\:\:\:\:−\:\mathrm{cot}\left(\alpha\right)\:\:=\:\:\mathrm{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\:+\:\alpha\right)\:\:???? \\ $$

Question Number 54152    Answers: 0   Comments: 3

Question Number 54137    Answers: 1   Comments: 2

Question Number 54126    Answers: 1   Comments: 0

Prove that ((sin 19θ)/(sin θ)) = cos(−18θ)+cos(−16θ)+... ...+ cos(−2θ)+1+cos(2θ)+....+cos(18θ).

$${Prove}\:{that} \\ $$$$\frac{\mathrm{sin}\:\mathrm{19}\theta}{\mathrm{sin}\:\theta}\:=\:\mathrm{cos}\left(−\mathrm{18}\theta\right)+\mathrm{cos}\left(−\mathrm{16}\theta\right)+... \\ $$$$\:\:\:...+\:\mathrm{cos}\left(−\mathrm{2}\theta\right)+\mathrm{1}+\mathrm{cos}\left(\mathrm{2}\theta\right)+....+\mathrm{cos}\left(\mathrm{18}\theta\right). \\ $$

Question Number 54116    Answers: 0   Comments: 0

Question Number 54102    Answers: 1   Comments: 3

the absolute value ∫_(10) ^(19) ((cos x)/(1+x^8 )) dx is...

$$\mathrm{the}\:\mathrm{absolute}\:\mathrm{value} \\ $$$$\int_{\mathrm{10}} ^{\mathrm{19}} \frac{\mathrm{cos}\:{x}}{\mathrm{1}+{x}^{\mathrm{8}} }\:{dx}\:\mathrm{is}... \\ $$

Question Number 54093    Answers: 0   Comments: 8

If tan(z) = 2, find the value of z

$$\mathrm{If}\:\:\:\:\:\:\mathrm{tan}\left(\mathrm{z}\right)\:\:=\:\:\mathrm{2},\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{z} \\ $$

Question Number 54074    Answers: 1   Comments: 5

Evaluate : 1) ∫_0 ^( 1) (dx/((√(1+x))+(√(1−x))+2)) 2) ∫_0 ^( 2) ((ln(1+2x))/(1+x^2 )) 3) ∫_0 ^( π) (x/(√(1+sin^3 x)))((3πcosx+4sinx)sin^2 x+4)dx 4) ∫_0 ^( π) ((x^2 cos^2 x−xsinx−cosx−1)/((1+xsinx)^2 )) dx.

$${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dx}}{\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}+\mathrm{2}}\: \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right) \\ $$$$\:\int_{\mathrm{0}} ^{\:\pi} \frac{{x}}{\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{3}} {x}}}\left(\left(\mathrm{3}\pi\mathrm{cos}{x}+\mathrm{4sin}{x}\right)\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{4}\right){dx} \\ $$$$\left.\mathrm{4}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:\frac{{x}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} {x}−{x}\mathrm{sin}{x}−\mathrm{cos}{x}−\mathrm{1}}{\left(\mathrm{1}+{x}\mathrm{sin}{x}\right)^{\mathrm{2}} }\:{dx}. \\ $$

Question Number 54073    Answers: 1   Comments: 0

Question Number 54070    Answers: 2   Comments: 7

Evaluate : 1) ∫_(−1) ^( 1) cot^(−1) ((1/(√(1−x^2 )))).(cot^(−1) (x/(√(1−(x^2 )^(∣x∣) ))))dx 2) ∫_0 ^( (π/2)) ((sin^2 (10)θ)/(sin^2 θ)) dθ 3) ∫_0 ^( (π/4)) ((ln(cotx))/(((sinx)^(2009) +(cosx)^(2009) )^2 )).(sin2x)^(2008) dx 4) ∫_0 ^( 2) ((4x+10)/((x^2 +5x+6)^2 )) dx.

$${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right) \\ $$$$\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right).\left(\mathrm{co}{t}^{−\mathrm{1}} \frac{{x}}{\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mid{x}\mid} }}\right){dx} \\ $$$$\left.\mathrm{2}\right) \\ $$$$\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{10}\right)\theta}{\mathrm{sin}^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\left.\mathrm{3}\right) \\ $$$$\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left({cotx}\right)}{\left(\left(\mathrm{sin}{x}\right)^{\mathrm{2009}} +\left(\mathrm{cos}{x}\right)^{\mathrm{2009}} \right)^{\mathrm{2}} }.\left(\mathrm{sin2}{x}\right)^{\mathrm{2008}} {dx} \\ $$$$\left.\mathrm{4}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{4}{x}+\mathrm{10}}{\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}\right)^{\mathrm{2}} }\:{dx}. \\ $$

Question Number 54068    Answers: 1   Comments: 2

Question Number 54061    Answers: 0   Comments: 8

Question Number 54051    Answers: 1   Comments: 0

Question Number 54045    Answers: 2   Comments: 1

Question Number 54034    Answers: 0   Comments: 1

If f(x)=f(a+b−x), then ∫_a ^b x f(x) dx =

$$\mathrm{If}\:{f}\left({x}\right)={f}\left({a}+{b}−{x}\right),\:\mathrm{then}\:\underset{{a}} {\overset{{b}} {\int}}\:{x}\:{f}\left({x}\right)\:{dx}\:= \\ $$

Question Number 54033    Answers: 2   Comments: 1

∫_( 0) ^1 (√((1−x)/(1+x))) dx =

$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\:{dx}\:= \\ $$

Question Number 54032    Answers: 0   Comments: 4

∫_(−2 ) ^2 min (x−[x], −x−[−x])dx equals [x] represents greatest integer less than or equal to x).

$$\underset{−\mathrm{2}\:} {\overset{\mathrm{2}} {\int}}\:\mathrm{min}\:\left({x}−\left[{x}\right],\:−{x}−\left[−{x}\right]\right){dx}\:\mathrm{equals}\:\left[{x}\right] \\ $$$$\mathrm{represents}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{less}\:\mathrm{than}\:\mathrm{or} \\ $$$$\left.\mathrm{equal}\:\mathrm{to}\:{x}\right). \\ $$

Question Number 54031    Answers: 1   Comments: 0

If f(a+b−x)= f(x), then ∫_a ^b x f(x) dx =

$$\mathrm{If}\:\:{f}\left({a}+{b}−{x}\right)=\:{f}\left({x}\right),\:\mathrm{then}\:\underset{{a}} {\overset{{b}} {\int}}\:{x}\:{f}\left({x}\right)\:{dx}\:= \\ $$

Question Number 54029    Answers: 1   Comments: 1

∫_( 3) ^9 ((√x)/((√(12−x)) + (√x))) dx = 9

$$\underset{\:\mathrm{3}} {\overset{\mathrm{9}} {\int}}\:\frac{\sqrt{{x}}}{\sqrt{\mathrm{12}−{x}}\:+\:\sqrt{{x}}}\:{dx}\:=\:\mathrm{9} \\ $$

Question Number 54028    Answers: 1   Comments: 0

If for every integer n, ∫_n ^(n+1) f(x) dx = n^2 , then the value of ∫_(−2) ^4 f(x) dx=

$$\mathrm{If}\:\mathrm{for}\:\mathrm{every}\:\mathrm{integer}\:{n},\:\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{f}\left({x}\right)\:{dx}\:=\:{n}^{\mathrm{2}} , \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{−\mathrm{2}} {\overset{\mathrm{4}} {\int}}\:{f}\left({x}\right)\:{dx}= \\ $$

Question Number 54025    Answers: 1   Comments: 1

The points A, B, C, D have coordinates (−7,9), (3,4), (1,12), and (−2,−9). find the length of the linePQ where P devides AB in the ratio 2:3 and devides CD in the ratio 1:−4.

$$\mathrm{The}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C},\:\mathrm{D}\:\mathrm{have}\:\mathrm{coordinates} \\ $$$$\left(−\mathrm{7},\mathrm{9}\right),\:\left(\mathrm{3},\mathrm{4}\right),\:\left(\mathrm{1},\mathrm{12}\right),\:\mathrm{and}\:\left(−\mathrm{2},−\mathrm{9}\right). \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{linePQ}\:\mathrm{where}\:\mathrm{P} \\ $$$$\mathrm{devides}\:\mathrm{AB}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{2}:\mathrm{3}\:\mathrm{and}\:\mathrm{devides} \\ $$$$\mathrm{CD}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{1}:−\mathrm{4}. \\ $$

  Pg 1503      Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com