Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1508

Question Number 59526    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(2sh(x)+3ch(x)))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{2}{sh}\left({x}\right)+\mathrm{3}{ch}\left({x}\right)} \\ $$

Question Number 59518    Answers: 1   Comments: 1

if x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 calculste x^5 +y^5 +z^5

$${if}\:\:{x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} \:+{y}^{\mathrm{3}} \:+{z}^{\mathrm{3}} =\mathrm{3}\:\:{calculste} \\ $$$${x}^{\mathrm{5}} +{y}^{\mathrm{5}} \:+{z}^{\mathrm{5}} \\ $$

Question Number 59516    Answers: 1   Comments: 0

Question Number 59515    Answers: 0   Comments: 0

Question Number 59509    Answers: 2   Comments: 0

Question Number 59506    Answers: 1   Comments: 4

Question Number 59505    Answers: 2   Comments: 0

Two particles P and Q move towards each other along a straight line MN, 51 meters long. P starts fromM with velocity 5 ms^(−1) and constant acceleration of 1 ms^(−2) . Q starts from N at the same time with velocity 6 ms^(−1) and at a constant acceleration of 3 ms^(−2) . Find the time when the: (a) particles are 30 metres apart; (b) particles meet; (c) velocity of P is (3/4) os the velocity of Q.

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}\:\mathrm{move}\:\mathrm{towards}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:{MN},\:\mathrm{51}\:\mathrm{meters} \\ $$$$\mathrm{long}.\:\mathrm{P}\:\mathrm{starts}\:\mathrm{from}{M}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}\:\mathrm{ms}^{−\mathrm{2}} .\:\mathrm{Q}\:\mathrm{starts} \\ $$$$\mathrm{from}\:\mathrm{N}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{6}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{3}\:\mathrm{ms}^{−\mathrm{2}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{the}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{particles}\:\mathrm{are}\:\mathrm{30}\:\mathrm{metres}\:\mathrm{apart}; \\ $$$$\left(\mathrm{b}\right)\:\mathrm{particles}\:\mathrm{meet}; \\ $$$$\left(\mathrm{c}\right)\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{P}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{os}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{Q}. \\ $$

Question Number 59503    Answers: 0   Comments: 1

∫_a ^b (e^(−x^2 ) )dx=?

$$\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}\left(\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } \right)\boldsymbol{{dx}}=? \\ $$

Question Number 59499    Answers: 1   Comments: 3

Question Number 59483    Answers: 0   Comments: 0

Question Number 59482    Answers: 0   Comments: 0

Question Number 59478    Answers: 2   Comments: 0

x^4 +x^2 +16=0

$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$

Question Number 59474    Answers: 1   Comments: 3

1) ∫_0 ^(10π) ([sec^(−1) x]+[cot^(−1) x] ) dx = ? 2)area bounded by curve y=ln(x) and the lines y=0,y=ln(3) and x=0 is equal to ?

$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left(\left[\mathrm{sec}^{−\mathrm{1}} {x}\right]+\left[\mathrm{co}{t}^{−\mathrm{1}} {x}\right]\:\right)\:{dx}\:=\:? \\ $$$$\left.\mathrm{2}\right){area}\:{bounded}\:{by}\:{curve}\:{y}={ln}\left({x}\right)\:{and} \\ $$$${the}\:{lines}\:{y}=\mathrm{0},{y}={ln}\left(\mathrm{3}\right)\:{and}\:{x}=\mathrm{0}\:{is} \\ $$$${equal}\:{to}\:? \\ $$

Question Number 59459    Answers: 0   Comments: 1

Question Number 59452    Answers: 0   Comments: 2

Would anyone like to do a whatsapp group of differential calculus, integral, vector, geometry vector and analytics?

$$\mathrm{Would}\:\mathrm{anyone}\:\mathrm{like}\:\mathrm{to}\:\mathrm{do}\:\mathrm{a}\:\mathrm{whatsapp} \\ $$$$\mathrm{group}\:\mathrm{of}\:\mathrm{differential}\:\mathrm{calculus}, \\ $$$$\mathrm{integral},\:\mathrm{vector},\:\mathrm{geometry}\:\mathrm{vector} \\ $$$$\mathrm{and}\:\mathrm{analytics}? \\ $$

Question Number 59442    Answers: 1   Comments: 2

Solve the system xy + 3x + 2y = − 6 ..... (i) yx + y + 3z = − 3 ..... (ii) zx + 2z + x = 2 ..... (iii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{xy}\:+\:\mathrm{3x}\:+\:\mathrm{2y}\:\:=\:−\:\mathrm{6}\:\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{yx}\:+\:\mathrm{y}\:+\:\mathrm{3z}\:\:\:=\:−\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{zx}\:+\:\mathrm{2z}\:+\:\mathrm{x}\:\:\:=\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{iii}\right) \\ $$

Question Number 59441    Answers: 1   Comments: 0

Question Number 59467    Answers: 0   Comments: 0

∫_0 ^∞ (1/(cos(x)+sinh(x))) dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{cos}\left({x}\right)+{sinh}\left({x}\right)}\:{dx} \\ $$

Question Number 59439    Answers: 0   Comments: 0

Question Number 59438    Answers: 0   Comments: 2

Question Number 59437    Answers: 1   Comments: 0

Question Number 59409    Answers: 0   Comments: 2

Question Number 59407    Answers: 1   Comments: 1

Question Number 59397    Answers: 0   Comments: 1

6^4 ×6^3

$$\mathrm{6}^{\mathrm{4}} ×\mathrm{6}^{\mathrm{3}} \\ $$

Question Number 59393    Answers: 1   Comments: 6

lim_(x→+∞) (((x^2 −4)/(x^2 +2)))^((x^2 −1)/(x+1)) pls.

$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\overset{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} {\right)} \\ $$$${pls}. \\ $$

Question Number 59389    Answers: 2   Comments: 0

If 0≤ x ≤ π and 81^(sin^2 x) + 81^(cos^2 x) =30, then x is equal to

$$\mathrm{If}\:\:\:\mathrm{0}\leqslant\:{x}\:\leqslant\:\pi\:\:\mathrm{and}\:\:\mathrm{81}^{\mathrm{sin}^{\mathrm{2}} {x}} +\:\mathrm{81}^{\mathrm{cos}^{\mathrm{2}} {x}} =\mathrm{30}, \\ $$$$\mathrm{then}\:\:{x}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

  Pg 1503      Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511      Pg 1512   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com