Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1507

Question Number 59407    Answers: 1   Comments: 1

Question Number 59397    Answers: 0   Comments: 1

6^4 ×6^3

$$\mathrm{6}^{\mathrm{4}} ×\mathrm{6}^{\mathrm{3}} \\ $$

Question Number 59393    Answers: 1   Comments: 6

lim_(x→+∞) (((x^2 −4)/(x^2 +2)))^((x^2 −1)/(x+1)) pls.

$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\overset{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} {\right)} \\ $$$${pls}. \\ $$

Question Number 59389    Answers: 2   Comments: 0

If 0≤ x ≤ π and 81^(sin^2 x) + 81^(cos^2 x) =30, then x is equal to

$$\mathrm{If}\:\:\:\mathrm{0}\leqslant\:{x}\:\leqslant\:\pi\:\:\mathrm{and}\:\:\mathrm{81}^{\mathrm{sin}^{\mathrm{2}} {x}} +\:\mathrm{81}^{\mathrm{cos}^{\mathrm{2}} {x}} =\mathrm{30}, \\ $$$$\mathrm{then}\:\:{x}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 59380    Answers: 1   Comments: 0

Question Number 59378    Answers: 2   Comments: 0

Question Number 59377    Answers: 2   Comments: 0

Find Σ_(n=1) ^∞ ((1+2n+3n^2 +4n^3 )/3^n )

$$\mathrm{Find}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}+\mathrm{2n}+\mathrm{3n}^{\mathrm{2}} +\mathrm{4n}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{n}} } \\ $$

Question Number 59381    Answers: 0   Comments: 3

∫((xdx)/(sin x)) = ?

$$\:\:\int\frac{{xdx}}{\mathrm{sin}\:{x}}\:=\:? \\ $$

Question Number 59366    Answers: 1   Comments: 0

I_n =∫_0 ^π sin^n (x)dx find Σ_(n=2) ^∞ (I_n /(n−1))

$${I}_{{n}} =\int_{\mathrm{0}} ^{\pi} {sin}^{{n}} \left({x}\right){dx} \\ $$$${find}\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\:\frac{{I}_{{n}} }{{n}−\mathrm{1}} \\ $$

Question Number 59401    Answers: 1   Comments: 0

5log_(4(√2)) (3−(√6) ) −6log_8 ((√3)−(√2))

$$\mathrm{5}{log}_{\mathrm{4}\sqrt{\mathrm{2}}} \left(\mathrm{3}−\sqrt{\mathrm{6}}\:\right)\:−\mathrm{6}{log}_{\mathrm{8}} \left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right) \\ $$

Question Number 59400    Answers: 1   Comments: 0

(4^6 )^2

$$\left(\mathrm{4}^{\mathrm{6}} \right)^{\mathrm{2}} \\ $$

Question Number 59361    Answers: 2   Comments: 6

Pls help r^2 r′′=C where r(t) is a function and C is a constant

$${Pls}\:{help} \\ $$$${r}^{\mathrm{2}} {r}''={C}\:{where}\:{r}\left({t}\right)\:{is}\:{a}\:{function}\:{and} \\ $$$${C}\:{is}\:{a}\:{constant} \\ $$

Question Number 59349    Answers: 0   Comments: 0

Question Number 59347    Answers: 1   Comments: 7

Question Number 59346    Answers: 0   Comments: 0

Question Number 59344    Answers: 2   Comments: 0

∫ e^x (((1−sin x)/(1−cos x)))dx = ?

$$\int\:{e}^{{x}} \left(\frac{\mathrm{1}−\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}\right){dx}\:=\:? \\ $$

Question Number 59338    Answers: 1   Comments: 1

Question Number 59336    Answers: 1   Comments: 0

Find the nth term of the AP: 2, − (2/5) , − (2/(11)) , ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{AP}:\:\:\:\:\:\mathrm{2},\:\:\:\:−\:\frac{\mathrm{2}}{\mathrm{5}}\:,\:\:\:\:\:−\:\frac{\mathrm{2}}{\mathrm{11}}\:,\:... \\ $$

Question Number 59335    Answers: 0   Comments: 0

Question Number 59326    Answers: 1   Comments: 1

sin cos^(−1) (−(√(3/2)))

$${sin}\:{cos}^{−\mathrm{1}} \left(−\sqrt{\left.\mathrm{3}/\mathrm{2}\right)}\right. \\ $$

Question Number 59323    Answers: 1   Comments: 0

Question Number 59316    Answers: 2   Comments: 0

Question Number 59313    Answers: 1   Comments: 0

c+6×t c=3 t=5

$$\mathrm{c}+\mathrm{6}×\mathrm{t}\:\:\mathrm{c}=\mathrm{3}\:\:\mathrm{t}=\mathrm{5} \\ $$

Question Number 59305    Answers: 2   Comments: 0

Witthout using mathematical tables or calculator, find,in surdform(radicals) , the value tan22.5°

$$\mathrm{Witthout}\:\mathrm{using}\:\mathrm{mathematical}\:\mathrm{tables}\:\mathrm{or} \\ $$$$\mathrm{calculator},\:\mathrm{find},\mathrm{in}\:\mathrm{surdform}\left(\mathrm{radicals}\right) \\ $$$$,\:\mathrm{the}\:\mathrm{value}\:\mathrm{tan22}.\mathrm{5}° \\ $$

Question Number 59301    Answers: 1   Comments: 4

Question Number 59295    Answers: 1   Comments: 0

Let A be3×3 matrix with eigen values 1,−1,0. Then determinant of I+A^(100 ) =??

$${Let}\:{A}\:{be}\mathrm{3}×\mathrm{3}\:{matrix}\:{with}\:{eigen}\:{values} \\ $$$$\mathrm{1},−\mathrm{1},\mathrm{0}.\:{Then}\:{determinant}\:{of}\:{I}+{A}^{\mathrm{100}\:} =?? \\ $$

  Pg 1502      Pg 1503      Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508      Pg 1509      Pg 1510      Pg 1511   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com