Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1507
Question Number 57487 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left({t}\right)}{{sint}}{dt}\:. \\ $$
Question Number 57486 Answers: 0 Comments: 4
$${let}\:{f}\left({x}\right)\:=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:\: \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right){developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie}. \\ $$
Question Number 57480 Answers: 0 Comments: 2
$${if}\:{F}\left({x},{y}\right)={F}\left({y},{x}\right)\:{and}\:{x}+{y}={c}\:\left({constant}\right) \\ $$$${prove}\:{that}\:{F}_{{max}\:{or}\:{min}} ={F}\left(\frac{{c}}{\mathrm{2}},\frac{{c}}{\mathrm{2}}\right). \\ $$
Question Number 57474 Answers: 1 Comments: 2
$$\mathrm{prove}\: \\ $$$$\boldsymbol{{sin}}\mathrm{18}×\boldsymbol{{cos}}\mathrm{36}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 57469 Answers: 0 Comments: 3
$$\frac{\mathrm{4}{tan}\mathrm{75}}{\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{75}}=\frac{\mathrm{1}}{{cos}\mathrm{150}}\: \\ $$$${find}\:{tan}\mathrm{75}\:{in}\:{surd}\:{form} \\ $$
Question Number 57462 Answers: 0 Comments: 0
$$\mathrm{Two}\:\mathrm{conductors}\:\mathrm{has}\:\mathrm{total}\:\mathrm{charge}\:\mathrm{of} \\ $$$$+\mathrm{10}.\mathrm{0}\mu\mathrm{C}\:\mathrm{and}\:−\mathrm{10}\mu\mathrm{C}\:\mathrm{with}\:\mathrm{10volt}\: \\ $$$$\mathrm{between}\:\mathrm{them}. \\ $$$$\:\left(\mathrm{a}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{capacitance}\:\mathrm{between}\:\mathrm{them} \\ $$$$\:\left(\mathrm{b}\right)\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{p}.\mathrm{d}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{condoctors}\:\mathrm{if}\:\mathrm{the}\:\mathrm{charge}\:\mathrm{on}\:\mathrm{each} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{are}\:\mathrm{increased}\:\mathrm{to}\:+\mathrm{100}\mu\mathrm{C}\:\mathrm{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{100}\mu\mathrm{C}\:\mathrm{respectively}\:? \\ $$
Question Number 57456 Answers: 0 Comments: 0
Question Number 57448 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{sin}\:{x}+\mathrm{cosec}\:{x}=\mathrm{2},\:\mathrm{then}\:\mathrm{sin}^{{n}} {x}+\mathrm{cosec}^{{n}} {x} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 57442 Answers: 2 Comments: 4
$$\left.\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:=\:? \\ $$$$\left.\mathrm{2}\right)\:{For}\:{x}\epsilon{R},\:{f}\left({x}\right)=\mid{ln}\mathrm{2}−\mathrm{sin}\:{x}\mid\:{and}\: \\ $$$${g}\left({x}\right)={f}\left({f}\left({x}\right)\right),\:{then}\:{prove}\:{that}\: \\ $$$${g}'\left(\mathrm{0}\right)=\mathrm{cos}\:\left({ln}\mathrm{2}\right). \\ $$
Question Number 57439 Answers: 0 Comments: 1
$${Find}\:\:{all}\:\:{solutions}\:\:{of}\:\:{x},\:{y},\:{z}\:\:\:{integers}\:\:{that}\:\:{satisfy} \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:+\:{z}^{\mathrm{3}} \:\:=\:\:\mathrm{33} \\ $$
Question Number 57435 Answers: 0 Comments: 0
Question Number 57434 Answers: 0 Comments: 0
$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{product}\:\mathrm{operator} \\ $$$$\:\:\mathrm{e}.\mathrm{g}\:\:\:\:\:\mathrm{product}\:\mathrm{of}\:\:\:\:\:\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}\:...\:\:\left[\mathrm{1},\:\mathrm{infinity}\right] \\ $$
Question Number 57433 Answers: 2 Comments: 0
Question Number 57423 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({e}^{{t}} \:+\overset{−{t}} {{e}}\right)^{{n}} } \\ $$$${calculate}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$
Question Number 57422 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} ={n}\:\int_{\mathrm{1}} ^{\pi} \:\frac{{sinx}}{{x}^{{n}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$
Question Number 57421 Answers: 1 Comments: 0
$${calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\frac{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \:+{e}^{{x}} }{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$
Question Number 57420 Answers: 0 Comments: 1
$${let}\:{J}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\sqrt{{t}+\mathrm{1}}\:+\sqrt{{t}+\mathrm{4}}}{dt} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{J}\left({x}\right) \\ $$
Question Number 57419 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}+\mathrm{1}\right)\:{ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\right. \\ $$
Question Number 57418 Answers: 0 Comments: 1
$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{4}} \:\frac{\mid{x}−\mathrm{1}\mid+\mid{x}−\mathrm{2}\mid}{\mid{x}^{\mathrm{2}} −\mathrm{9}\mid\:+{x}^{\mathrm{2}} \:+\mathrm{16}}{dx} \\ $$
Question Number 57417 Answers: 0 Comments: 2
$${let}\:{F}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}+{sint}}{\mathrm{2}+{cost}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{1}+{sint}}{\mathrm{2}+{cost}}{dt} \\ $$
Question Number 57416 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\int_{\mathrm{2}{x}} ^{\mathrm{4}{x}} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right) \\ $$
Question Number 57415 Answers: 0 Comments: 1
$${solve}\:\left({x}−\mathrm{1}\right){y}^{'} \:+\left(\mathrm{1}+\sqrt{{x}}\right){y}\:={x}\:{e}^{−\mathrm{2}{x}} \\ $$
Question Number 57414 Answers: 0 Comments: 2
$${solve}\:\:{y}'\:=\mathrm{2}{y}^{\mathrm{2}} \:+{y}\:\:\:{and}\:{y}\left({o}\right)=\mathrm{1} \\ $$
Question Number 57413 Answers: 0 Comments: 0
$${prove}\:{that}\:{ln}\left(\mathrm{1}+{x}\right)>\frac{{arctanx}}{\mathrm{1}+{x}}\:\:\forall{x}>\mathrm{0} \\ $$
Question Number 57412 Answers: 0 Comments: 1
$${let}\:{u}_{{n}} =\mathrm{1}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{divdrgente}. \\ $$
Question Number 57411 Answers: 1 Comments: 1
$${let}\:{f}\left({x}\right)={arctan}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right) \\ $$$${find}\:{f}^{−\mathrm{1}} \left({x}\right)\:. \\ $$
Pg 1502 Pg 1503 Pg 1504 Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509 Pg 1510 Pg 1511
Terms of Service
Privacy Policy
Contact: info@tinkutara.com