Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1506
Question Number 50432 Answers: 1 Comments: 1
$${solve}\:{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} \:+\mathrm{2}{y}\:={x}^{\mathrm{2}} \\ $$
Question Number 50431 Answers: 1 Comments: 1
$${solve}\:{xy}^{'} \:+{y}\:=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$
Question Number 50430 Answers: 0 Comments: 1
$${solve}\:\left({x}^{\mathrm{2}} \:+\mathrm{3}\right){y}^{'} \:+\left({x}^{\mathrm{3}} −\mathrm{1}\right){y}\:={x}^{\mathrm{2}} \\ $$
Question Number 50429 Answers: 0 Comments: 2
$${solve}\:{y}^{''} \:+{e}^{{x}^{\mathrm{2}} } {y}\:=\mathrm{0} \\ $$
Question Number 50428 Answers: 0 Comments: 0
$${solve}\:{y}^{'} \:+\frac{\mathrm{2}{x}+\mathrm{1}}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:{y}\:=\:\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$
Question Number 50427 Answers: 0 Comments: 2
$${let}\:{I}_{{n}} \left(\lambda\right)\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{vos}\left({nt}\right)}{\mathrm{1}−\mathrm{2}\lambda{cost}\:+\lambda^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{I}_{\mathrm{0}} \left(\lambda\right)\:{and}\:{I}_{\mathrm{1}} \left(\lambda\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{relation}\:{between}\:{I}_{{n}−\mathrm{1}} ,{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{I}_{{n}} \left(\lambda\right). \\ $$
Question Number 50426 Answers: 2 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${U}_{{n}} =\left(\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right)^{{n}} \\ $$
Question Number 50425 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}^{\mathrm{4}} \left({t}\right)}{{t}^{\mathrm{3}} }\:{dt} \\ $$
Question Number 50424 Answers: 0 Comments: 0
$${convergence}\:{and}\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$
Question Number 50422 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$
Question Number 50421 Answers: 0 Comments: 1
$${calculate}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{du}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {u}\right)^{\mathrm{3}} } \\ $$
Question Number 50420 Answers: 1 Comments: 4
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\:{cosx}\:{ln}\left({cosx}\right){dx} \\ $$
Question Number 50418 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{{lln}\left(\mathrm{3}\right)} \:\:\frac{{sh}^{\mathrm{2}} \left({x}\right){dx}}{{ch}^{\mathrm{3}} \left({x}\right)} \\ $$
Question Number 50417 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{dx} \\ $$
Question Number 50416 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{3}} \right)}{dx} \\ $$
Question Number 50415 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{cos}\theta\:{cost}} \\ $$
Question Number 50414 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{x}\:{sinx}\:{cosx}}{{tan}^{\mathrm{2}} {x}\:+{cotan}^{\mathrm{2}} {x}}{dx} \\ $$$${ctanx}\:=\frac{\mathrm{1}}{{tanx}} \\ $$
Question Number 50413 Answers: 0 Comments: 1
$${let}\:{f}\:\in{C}^{\mathrm{0}} \left({R},{R}\right)\:/\:\forall\:{x}\in{R}\:\:{f}\left({a}+{b}−{x}\right)={f}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:\int_{{a}} ^{{b}} {xf}\left({x}\right){dx}\:{interms}\:{of}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{xdx}}{\mathrm{1}+{sinx}} \\ $$
Question Number 50412 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}\:{with}\:{n}\:{from}\:{N} \\ $$$$\left.\mathrm{2}\right)\:{f}\:{continue}\:{from}\:\left[\mathrm{0},\pi\right]\:{to}\:{R}\:\:{find} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)}{dx} \\ $$
Question Number 50411 Answers: 0 Comments: 0
$${find}\:{all}\:{function}\:{f}\:\:{continues}\:{from}\:{R}\:{to}\:{R}\:/ \\ $$$$\forall\left({x},{h}\right)\in{R}^{\mathrm{2}} \:\:\:{f}\left({x}\right).{f}\left({y}\right)=\int_{{x}−{y}} ^{{x}+{y}} \:{f}\left({t}\right){dt}\:. \\ $$
Question Number 50410 Answers: 0 Comments: 0
$${determine}\:{all}\:{functions}\:{f}\:\in{C}^{\mathrm{0}} \left({R},{R}\right)\:/ \\ $$$$\int_{\mathrm{0}} ^{{x}} {f}\left({x}\right){dx}\:=\frac{\mathrm{2}}{\mathrm{3}}{xf}\left({x}\right)\:. \\ $$
Question Number 50409 Answers: 0 Comments: 0
$${find}\:\left[\sum_{{k}=\mathrm{1}} ^{\mathrm{10}^{\mathrm{4}} } \:\:\frac{\mathrm{1}}{\sqrt{{k}}}\right] \\ $$
Question Number 50408 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{lim}_{{n}\rightarrow+\infty} \sum_{{i}=\mathrm{1}} ^{{n}} \:\sum_{{j}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}+{j}} }{{i}+{j}} \\ $$
Question Number 50407 Answers: 0 Comments: 0
$${determine}\:{f}\:\in{C}^{\mathrm{0}} \left(\left[\mathrm{0},\mathrm{1}\right],{R}\right)\:{verifying} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{3}}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left({f}\left({x}^{\mathrm{2}} \right)\right)^{\mathrm{2}} {dx} \\ $$
Question Number 50406 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:{decompose}\:{at}\:{simple}\:{elements} \\ $$$${U}_{{n}} =\:\frac{{n}\:{x}^{{n}−\mathrm{1}} }{{x}^{{n}} −\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{x}−{e}^{{it}} } \\ $$
Question Number 50405 Answers: 1 Comments: 0
$${let}\:\:{V}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}\:+...+\frac{\mathrm{1}}{\mathrm{4}{n}−\mathrm{1}} \\ $$$${determine}\:{lim}_{{n}\rightarrow+\infty} \:{V}_{{n}} \\ $$
Pg 1501 Pg 1502 Pg 1503 Pg 1504 Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509 Pg 1510
Terms of Service
Privacy Policy
Contact: info@tinkutara.com