Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1505
Question Number 57434 Answers: 0 Comments: 0
$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{product}\:\mathrm{operator} \\ $$$$\:\:\mathrm{e}.\mathrm{g}\:\:\:\:\:\mathrm{product}\:\mathrm{of}\:\:\:\:\:\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}\:...\:\:\left[\mathrm{1},\:\mathrm{infinity}\right] \\ $$
Question Number 57433 Answers: 2 Comments: 0
Question Number 57423 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({e}^{{t}} \:+\overset{−{t}} {{e}}\right)^{{n}} } \\ $$$${calculate}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$
Question Number 57422 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} ={n}\:\int_{\mathrm{1}} ^{\pi} \:\frac{{sinx}}{{x}^{{n}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$
Question Number 57421 Answers: 1 Comments: 0
$${calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\frac{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \:+{e}^{{x}} }{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$
Question Number 57420 Answers: 0 Comments: 1
$${let}\:{J}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\sqrt{{t}+\mathrm{1}}\:+\sqrt{{t}+\mathrm{4}}}{dt} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{J}\left({x}\right) \\ $$
Question Number 57419 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}+\mathrm{1}\right)\:{ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\right. \\ $$
Question Number 57418 Answers: 0 Comments: 1
$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{4}} \:\frac{\mid{x}−\mathrm{1}\mid+\mid{x}−\mathrm{2}\mid}{\mid{x}^{\mathrm{2}} −\mathrm{9}\mid\:+{x}^{\mathrm{2}} \:+\mathrm{16}}{dx} \\ $$
Question Number 57417 Answers: 0 Comments: 2
$${let}\:{F}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}+{sint}}{\mathrm{2}+{cost}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{1}+{sint}}{\mathrm{2}+{cost}}{dt} \\ $$
Question Number 57416 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\int_{\mathrm{2}{x}} ^{\mathrm{4}{x}} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right) \\ $$
Question Number 57415 Answers: 0 Comments: 1
$${solve}\:\left({x}−\mathrm{1}\right){y}^{'} \:+\left(\mathrm{1}+\sqrt{{x}}\right){y}\:={x}\:{e}^{−\mathrm{2}{x}} \\ $$
Question Number 57414 Answers: 0 Comments: 2
$${solve}\:\:{y}'\:=\mathrm{2}{y}^{\mathrm{2}} \:+{y}\:\:\:{and}\:{y}\left({o}\right)=\mathrm{1} \\ $$
Question Number 57413 Answers: 0 Comments: 0
$${prove}\:{that}\:{ln}\left(\mathrm{1}+{x}\right)>\frac{{arctanx}}{\mathrm{1}+{x}}\:\:\forall{x}>\mathrm{0} \\ $$
Question Number 57412 Answers: 0 Comments: 1
$${let}\:{u}_{{n}} =\mathrm{1}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{divdrgente}. \\ $$
Question Number 57411 Answers: 1 Comments: 1
$${let}\:{f}\left({x}\right)={arctan}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right) \\ $$$${find}\:{f}^{−\mathrm{1}} \left({x}\right)\:. \\ $$
Question Number 57410 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{sin}\left({x}^{\mathrm{5}} \:+{x}−\mathrm{2}\right)}{{x}−\mathrm{1}} \\ $$
Question Number 57409 Answers: 0 Comments: 1
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:+{k}}} \\ $$$${calculste}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$
Question Number 57408 Answers: 0 Comments: 0
$${let}\:{the}\:{sequence}\:\left({a}_{{n}} \right)\:{wich}\:{verify}\:\:\:{a}_{\mathrm{1}} =\mathrm{2}\:\:{and} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} \:+\sqrt{\mathrm{1}+\frac{{a}_{{n}} }{{n}}} \\ $$$${prove}\:{that}\:\left(\frac{{a}_{{n}} }{{n}}\right)_{{n}\geqslant\mathrm{1}} \:\:\:{is}\:{convergente}. \\ $$
Question Number 57407 Answers: 0 Comments: 1
$${let}\:{U}_{\mathrm{0}} ={cos}\left(\frac{\pi}{\mathrm{3}}\right)\:{and}\:{U}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}+{U}_{{n}} }{\mathrm{2}}} \\ $$$${find}\:{U}_{{n}} \:{interms}\:{of}\:{n}\:. \\ $$
Question Number 57406 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\frac{{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+{cos}\left(\pi{x}\right) \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\left({x}\right)=\mathrm{0}\:{have}\:{a}\:{solurion}\:\alpha\:{inside}\:\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right)\:{use}\:{newton}\:{method}\:{to}\:{find}\:{a}\:{approximate}\: \\ $$$${value}\:{of}\:\alpha\:. \\ $$
Question Number 57405 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−{cosx}.{cos}\left(\mathrm{2}{x}\right)....{cos}\left({nx}\right)}{{x}^{\mathrm{2}} } \\ $$$${with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0}. \\ $$
Question Number 57404 Answers: 1 Comments: 5
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{sin}\left(\pi\sqrt{{cosx}}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 57400 Answers: 0 Comments: 1
Question Number 57390 Answers: 0 Comments: 0
$${a}^{\mathrm{2}} \:+\:{d}^{\mathrm{2}} \:−\:{ad}\:\:=\:\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:{bc} \\ $$$${a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:\:=\:\:{c}^{\mathrm{2}} \:+\:{d}^{\mathrm{2}} \\ $$$$\frac{{ab}\:+\:{cd}}{{ad}\:+\:{bc}}\:\:=\:\:? \\ $$
Question Number 57389 Answers: 1 Comments: 0
$${If}\:{a}\epsilon{R}\:{and}\:{the}\:{equation}\:: \\ $$$$−\mathrm{3}\left\{{x}\right\}^{\mathrm{2}} +\mathrm{2}\left\{{x}\right\}+{a}^{\mathrm{2}} =\mathrm{0}\:{has}\:{no}\:{integral} \\ $$$${solution},\:{then}\:{all}\:{possible}\:{value}\:{of}\:{a} \\ $$$${lie}\:{in}\:{the}\:{interval}\:: \\ $$$$\left({a}\right)\left(−\mathrm{1},\mathrm{0}\right)\mathrm{U}\left(\mathrm{0},\mathrm{1}\right)\:\:\:\left({b}\right)\left(\mathrm{1},\mathrm{2}\right) \\ $$$$\left({c}\right)\:\left(−\mathrm{2},−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\left(−\infty,−\mathrm{2}\right)\mathrm{U}\left(\mathrm{2},\infty\right) \\ $$
Question Number 57388 Answers: 0 Comments: 0
$$\mathrm{Given}\:{f}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{2016}\right),\:\:\forall{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{If}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{f}\left({x}\right)\:=\:\mathrm{30},\:\mathrm{then}\:\underset{\mathrm{3}} {\overset{\mathrm{5}} {\int}}\:{f}\left({x}\:+\:\mathrm{2016}\right)\:=\:... \\ $$
Pg 1500 Pg 1501 Pg 1502 Pg 1503 Pg 1504 Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509
Terms of Service
Privacy Policy
Contact: info@tinkutara.com