Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1505
Question Number 59835 Answers: 1 Comments: 0
Question Number 59834 Answers: 1 Comments: 0
Question Number 59833 Answers: 1 Comments: 0
Question Number 59832 Answers: 0 Comments: 0
Question Number 59829 Answers: 2 Comments: 2
Question Number 59825 Answers: 0 Comments: 0
Question Number 59814 Answers: 1 Comments: 1
Question Number 59812 Answers: 1 Comments: 1
$$\frac{\mathrm{6}}{\mathrm{3}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}}\:\:\:\boldsymbol{\mathrm{simplify}}. \\ $$
Question Number 59811 Answers: 1 Comments: 2
$$\left(\frac{\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \left(\mathrm{590}°\right)}{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\mathrm{320}°\right)}+\frac{\boldsymbol{\mathrm{sin}}\left(\mathrm{111}°\right)}{\boldsymbol{\mathrm{cos}}\left(\mathrm{159}°\right)}\right)\left(\frac{\boldsymbol{\mathrm{cos}}\left(\mathrm{279}°\right)}{\boldsymbol{\mathrm{sin}}\left(\mathrm{549}°\right)}+\frac{\boldsymbol{\mathrm{ctg}}\left(\mathrm{950}°\right)}{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \left(\mathrm{400}°\right)}\right) \\ $$$$\boldsymbol{\mathrm{simplify}}. \\ $$
Question Number 59803 Answers: 0 Comments: 3
Question Number 59802 Answers: 0 Comments: 1
Question Number 59800 Answers: 2 Comments: 0
$${find}\:{the}\:{general}\:{solution}\:{y}\left({t}\right)\:{of}\:{the} \\ $$$${ordinary}\:{differential}\:{equation} \\ $$$${y}''\:+\:\omega^{\mathrm{2}} {y}=\mathrm{cos}\:\omega{t}\:,{where}\:{w}>\mathrm{0} \\ $$
Question Number 59788 Answers: 2 Comments: 4
$${find}\:{the}\:{local}\:{minimum}\:{and}\:{maximum}\:{value} \\ $$$$ \\ $$$${a}^{\mathrm{2}} {y}={x}^{\mathrm{2}} \left({a}−{x}\right) \\ $$$${f}\left({x}\right)=\frac{\mathrm{4}}{\mathrm{2}−{x}}+\frac{\mathrm{9}}{{x}−\mathrm{3}} \\ $$
Question Number 59787 Answers: 2 Comments: 0
Question Number 59781 Answers: 0 Comments: 0
Question Number 59780 Answers: 1 Comments: 0
$${An}\:{earth}-{based}\:{observer}\:{sees}\:{rocket}\:{A} \\ $$$${moving}\:{at}\:\mathrm{0}.\mathrm{70}{c}\:{directly}\:{towards}\:{rocket} \\ $$$${B},{which}\:{is}\:{moving}\:{towards}\:{A}\:{at}\:\mathrm{0}.\mathrm{80}{c}. \\ $$$${How}\:{fast}\:{does}\:{rocket}\:{A}\:{sees}\:{rocket}\:{B} \\ $$$${approaching}? \\ $$$$ \\ $$
Question Number 59777 Answers: 0 Comments: 4
Question Number 59764 Answers: 1 Comments: 0
$$\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}+\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}. \\ $$$$\boldsymbol{\mathrm{simplify}}. \\ $$
Question Number 59763 Answers: 1 Comments: 0
$$\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}+\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}} \\ $$$$\boldsymbol{\mathrm{simplify}}. \\ $$
Question Number 59753 Answers: 2 Comments: 0
$$\mathrm{x}=\left(\mathrm{a}+\mathrm{b}\right)\mathrm{cosx}−\mathrm{bcos}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}}\right)\mathrm{x} \\ $$$$\mathrm{y}=\left(\mathrm{a}+\mathrm{b}\right)\mathrm{sinx}−\mathrm{bsin}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}}\right)\mathrm{x} \\ $$$$\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{tan}\left(\frac{\mathrm{a}}{\mathrm{2b}}+\mathrm{1}\right)\mathrm{x} \\ $$
Question Number 59752 Answers: 1 Comments: 2
Question Number 59807 Answers: 1 Comments: 0
$$\int\frac{{x}−\mathrm{1}}{\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 59733 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{y}=\sqrt{\mathrm{x}}\:\:,\mathrm{find}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\sqrt{\mathrm{101}} \\ $$
Question Number 59732 Answers: 2 Comments: 0
$${find}\:{I}_{{n}} =\int\:\:\frac{{dx}}{{sin}^{{n}} {x}}\:\:{with}\:\:{n}\:{integr}\:{natural}. \\ $$
Question Number 59730 Answers: 1 Comments: 0
$$\mathrm{5}^{\mathrm{2}{x}−\mathrm{1}\:} =\mathrm{25}^{{x}−\mathrm{1}} +\mathrm{100}\:{find}\:{value}\:{of}\:\mathrm{3}^{\mathrm{3}−{x}} \\ $$
Question Number 59727 Answers: 3 Comments: 0
$${a}={b}^{\mathrm{2}{p}\:\:} {b}={c}^{\mathrm{2}{q}\:} \:{c}={a}^{\mathrm{2}{r}} \:{prove}\:{that}\:{pqr}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Pg 1500 Pg 1501 Pg 1502 Pg 1503 Pg 1504 Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509
Terms of Service
Privacy Policy
Contact: info@tinkutara.com