Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1505

Question Number 60335    Answers: 0   Comments: 0

find I_n = ∫ x^n arctan(x)dx with n integr natural.

$${find}\:{I}_{{n}} =\:\int\:\:{x}^{{n}} \:{arctan}\left({x}\right){dx}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$

Question Number 60330    Answers: 0   Comments: 1

Question Number 60354    Answers: 0   Comments: 0

Question Number 60351    Answers: 0   Comments: 2

Question Number 60357    Answers: 0   Comments: 1

Question Number 60347    Answers: 1   Comments: 1

Question Number 60346    Answers: 0   Comments: 1

∫xsec^3 xdx please help

$$\int{x}\mathrm{sec}\:^{\mathrm{3}} {xdx} \\ $$$${please}\:{help} \\ $$

Question Number 60322    Answers: 1   Comments: 2

Question Number 60321    Answers: 0   Comments: 2

Question Number 60320    Answers: 0   Comments: 1

Question Number 60319    Answers: 0   Comments: 0

Question Number 60318    Answers: 0   Comments: 2

Question Number 60439    Answers: 2   Comments: 1

Question Number 60313    Answers: 3   Comments: 1

Question Number 60311    Answers: 1   Comments: 2

∫(dx/(√(sec h^2 (x)+1))) dx

$$\int\frac{{dx}}{\sqrt{{sec}\:{h}^{\mathrm{2}} \left({x}\right)+\mathrm{1}}}\:{dx} \\ $$

Question Number 60308    Answers: 0   Comments: 0

Question Number 60307    Answers: 0   Comments: 0

Question Number 60304    Answers: 0   Comments: 0

Question Number 60303    Answers: 1   Comments: 0

Question Number 60287    Answers: 2   Comments: 2

f(x) = x^3 + 3x − 7 f^(−1) (x) = ?

$${f}\left({x}\right)\:\:=\:\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}\:−\:\mathrm{7} \\ $$$${f}\:^{−\mathrm{1}} \left({x}\right)\:\:=\:\:? \\ $$

Question Number 60283    Answers: 1   Comments: 1

Question Number 60269    Answers: 3   Comments: 3

if tan A − cot A = 0 prove that sin A + cos A=?

$${if} \\ $$$${tan}\:{A}\:−\:{cot}\:{A}\:=\:\mathrm{0} \\ $$$${prove}\:{that} \\ $$$${sin}\:{A}\:+\:{cos}\:{A}=? \\ $$

Question Number 60264    Answers: 0   Comments: 0

let f(t) =∫_0 ^∞ (e^(−3 [x^2 ]) /(x^2 +t^2 ))dx with t>0 1. determine a explicit form of f(t) 2. find also g(t) =∫_0 ^∞ (e^(−3[x^2 ]) /((x^2 +t^2 )^2 ))dx 3. find the values of integrals ∫_0 ^∞ (e^(−3[x^2 ]) /(x^2 +3))dx and ∫_0 ^∞ (e^(−3[x^2 ]) /((x^2 +4)^2 )) dx .

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\:\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$$\mathrm{1}.\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\mathrm{2}.\:{find}\:{also}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{3}.\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 60263    Answers: 0   Comments: 1

let U_n =∫_0 ^∞ (e^(−n[x^2 ]) /(x^2 +3)) dx 1) calculate U_n interms of n 2) find lim_(n→+∞) n U_n 3)determine nature of the serie Σ U_n

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} +\mathrm{3}}\:{dx}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right){determine}\:{nature}\:{of}\:{the}\:{serie}\:\:\Sigma\:{U}_{{n}} \\ $$

Question Number 60257    Answers: 0   Comments: 4

The maximum value of Z=4x+2y subject to constraints 2x+3y≤18 , x+y≥10 and x,y≥0 is ?

$${The}\:{maximum}\:{value}\:{of}\:{Z}=\mathrm{4}{x}+\mathrm{2}{y} \\ $$$${subject}\:{to}\:{constraints}\:\mathrm{2}{x}+\mathrm{3}{y}\leqslant\mathrm{18}\:, \\ $$$${x}+{y}\geqslant\mathrm{10}\:{and}\:{x},{y}\geqslant\mathrm{0}\:{is}\:? \\ $$

Question Number 60256    Answers: 1   Comments: 0

  Pg 1500      Pg 1501      Pg 1502      Pg 1503      Pg 1504      Pg 1505      Pg 1506      Pg 1507      Pg 1508      Pg 1509   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com