Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1505
Question Number 59503 Answers: 0 Comments: 1
$$\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}\left(\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } \right)\boldsymbol{{dx}}=? \\ $$
Question Number 59499 Answers: 1 Comments: 3
Question Number 59483 Answers: 0 Comments: 0
Question Number 59482 Answers: 0 Comments: 0
Question Number 59478 Answers: 2 Comments: 0
$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$
Question Number 59474 Answers: 1 Comments: 3
$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left(\left[\mathrm{sec}^{−\mathrm{1}} {x}\right]+\left[\mathrm{co}{t}^{−\mathrm{1}} {x}\right]\:\right)\:{dx}\:=\:? \\ $$$$\left.\mathrm{2}\right){area}\:{bounded}\:{by}\:{curve}\:{y}={ln}\left({x}\right)\:{and} \\ $$$${the}\:{lines}\:{y}=\mathrm{0},{y}={ln}\left(\mathrm{3}\right)\:{and}\:{x}=\mathrm{0}\:{is} \\ $$$${equal}\:{to}\:? \\ $$
Question Number 59459 Answers: 0 Comments: 1
Question Number 59452 Answers: 0 Comments: 2
$$\mathrm{Would}\:\mathrm{anyone}\:\mathrm{like}\:\mathrm{to}\:\mathrm{do}\:\mathrm{a}\:\mathrm{whatsapp} \\ $$$$\mathrm{group}\:\mathrm{of}\:\mathrm{differential}\:\mathrm{calculus}, \\ $$$$\mathrm{integral},\:\mathrm{vector},\:\mathrm{geometry}\:\mathrm{vector} \\ $$$$\mathrm{and}\:\mathrm{analytics}? \\ $$
Question Number 59442 Answers: 1 Comments: 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{xy}\:+\:\mathrm{3x}\:+\:\mathrm{2y}\:\:=\:−\:\mathrm{6}\:\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{yx}\:+\:\mathrm{y}\:+\:\mathrm{3z}\:\:\:=\:−\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{zx}\:+\:\mathrm{2z}\:+\:\mathrm{x}\:\:\:=\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{iii}\right) \\ $$
Question Number 59441 Answers: 1 Comments: 0
Question Number 59467 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{cos}\left({x}\right)+{sinh}\left({x}\right)}\:{dx} \\ $$
Question Number 59439 Answers: 0 Comments: 0
Question Number 59438 Answers: 0 Comments: 2
Question Number 59437 Answers: 1 Comments: 0
Question Number 59409 Answers: 0 Comments: 2
Question Number 59407 Answers: 1 Comments: 1
Question Number 59397 Answers: 0 Comments: 1
$$\mathrm{6}^{\mathrm{4}} ×\mathrm{6}^{\mathrm{3}} \\ $$
Question Number 59393 Answers: 1 Comments: 6
$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\overset{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} {\right)} \\ $$$${pls}. \\ $$
Question Number 59389 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{0}\leqslant\:{x}\:\leqslant\:\pi\:\:\mathrm{and}\:\:\mathrm{81}^{\mathrm{sin}^{\mathrm{2}} {x}} +\:\mathrm{81}^{\mathrm{cos}^{\mathrm{2}} {x}} =\mathrm{30}, \\ $$$$\mathrm{then}\:\:{x}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 59380 Answers: 1 Comments: 0
Question Number 59378 Answers: 2 Comments: 0
Question Number 59377 Answers: 2 Comments: 0
$$\mathrm{Find}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}+\mathrm{2n}+\mathrm{3n}^{\mathrm{2}} +\mathrm{4n}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{n}} } \\ $$
Question Number 59381 Answers: 0 Comments: 3
$$\:\:\int\frac{{xdx}}{\mathrm{sin}\:{x}}\:=\:? \\ $$
Question Number 59366 Answers: 1 Comments: 0
$${I}_{{n}} =\int_{\mathrm{0}} ^{\pi} {sin}^{{n}} \left({x}\right){dx} \\ $$$${find}\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\:\frac{{I}_{{n}} }{{n}−\mathrm{1}} \\ $$
Question Number 59401 Answers: 1 Comments: 0
$$\mathrm{5}{log}_{\mathrm{4}\sqrt{\mathrm{2}}} \left(\mathrm{3}−\sqrt{\mathrm{6}}\:\right)\:−\mathrm{6}{log}_{\mathrm{8}} \left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right) \\ $$
Question Number 59400 Answers: 1 Comments: 0
$$\left(\mathrm{4}^{\mathrm{6}} \right)^{\mathrm{2}} \\ $$
Pg 1500 Pg 1501 Pg 1502 Pg 1503 Pg 1504 Pg 1505 Pg 1506 Pg 1507 Pg 1508 Pg 1509
Terms of Service
Privacy Policy
Contact: info@tinkutara.com