Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1500

Question Number 61635    Answers: 1   Comments: 0

2(∫_0 ^( x) y^3 cos xdx)[((yd^2 y)/dx^2 )−((dy/dx))^2 ] = ky^5 sin x ; y(0)=a, y′(0)=0 . solve the differential equation. (Laplace tranforms might be helpful, i think).

$$\mathrm{2}\left(\int_{\mathrm{0}} ^{\:{x}} {y}^{\mathrm{3}} \mathrm{cos}\:{xdx}\right)\left[\frac{{yd}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{ky}^{\mathrm{5}} \mathrm{sin}\:{x}\:\:\:\:\:;\:\: \\ $$$$\:\:{y}\left(\mathrm{0}\right)={a},\:{y}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$$$\:{solve}\:{the}\:{differential}\:{equation}. \\ $$$$\left({Laplace}\:{tranforms}\:{might}\right. \\ $$$$\left.\:\:\:\:{be}\:{helpful},\:{i}\:{think}\right). \\ $$

Question Number 61622    Answers: 0   Comments: 0

If (√(x (√((x+1) (√((x+2) (√((x+3) (√(...)))))))))) = 2019 so (√(x + (√((x+1) + (√((x+2) + (√((x+3) + (√(...)))))))))) = ?

$${If}\:\:\:\sqrt{{x}\:\sqrt{\left({x}+\mathrm{1}\right)\:\sqrt{\left({x}+\mathrm{2}\right)\:\sqrt{\left({x}+\mathrm{3}\right)\:\sqrt{...}}}}}\:\:\:=\:\:\:\mathrm{2019} \\ $$$${so}\:\:\sqrt{{x}\:+\:\sqrt{\left({x}+\mathrm{1}\right)\:+\:\:\sqrt{\left({x}+\mathrm{2}\right)\:+\:\:\sqrt{\left({x}+\mathrm{3}\right)\:+\:\:\sqrt{...}}}}}\:\:\:=\:\:\:? \\ $$$$ \\ $$

Question Number 61667    Answers: 1   Comments: 0

∫(√(tan(x))) dx

$$\int\sqrt{{tan}\left({x}\right)}\:{dx}\: \\ $$

Question Number 61625    Answers: 1   Comments: 0

1+(1/(1+(1/(1+(1/(1+(1/(1+(1/(1+...))))))))))=

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+...}}}}}= \\ $$

Question Number 61614    Answers: 0   Comments: 1

∫_(−1) ^1 (d/dx) (tan^(−1) (1/x))dx =

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{d}}{{dx}}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right){dx}\:= \\ $$

Question Number 61613    Answers: 1   Comments: 1

S = 1 + (3/(2018)) + (5/(2018^2 )) + (7/(2018^3 )) + ... 4S − S^2 = ?

$${S}\:\:=\:\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2018}}\:+\:\frac{\mathrm{5}}{\mathrm{2018}^{\mathrm{2}} }\:+\:\frac{\mathrm{7}}{\mathrm{2018}^{\mathrm{3}} }\:+\:... \\ $$$$\mathrm{4}{S}\:−\:{S}^{\mathrm{2}} \:\:=\:\:? \\ $$

Question Number 61605    Answers: 0   Comments: 7

solve at Z^2 2x +5y =4

$${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$

Question Number 61601    Answers: 1   Comments: 1

calvulate ∫∫_w (x^2 −y^2 )e^(−x−y) dxdy with W={(x,y)∈R^2 /0≤x≤1 and 1≤y≤3}

$${calvulate}\:\int\int_{{w}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){e}^{−{x}−{y}} {dxdy} \\ $$$${with}\:{W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$

Question Number 61591    Answers: 1   Comments: 8

solve for z∈C (z)^(1/2) =−1 (z)^(1/3) =−1 (z)^(1/4) =−1

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$

Question Number 61569    Answers: 1   Comments: 3

Question Number 61566    Answers: 1   Comments: 0

∫_2 ^4 ((√(ln(9−(6−x)))/((√(ln(9−x))) + (√(ln(3−x))))) dx

$$\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\sqrt{{ln}\left(\mathrm{9}−\left(\mathrm{6}−{x}\right)\right.}}{\sqrt{{ln}\left(\mathrm{9}−{x}\right)}\:+\:\sqrt{{ln}\left(\mathrm{3}−{x}\right)}}\:{dx} \\ $$

Question Number 61559    Answers: 2   Comments: 1

Question Number 61554    Answers: 1   Comments: 1

Question Number 61545    Answers: 0   Comments: 0

Question Number 61537    Answers: 2   Comments: 2

Question Number 61536    Answers: 0   Comments: 1

1)let U_n =Σ_(k=0) ^n (−1)^k =1−1+1−1+...(n+1 terms) is lim_(n→+∞) U_n exist ? find U_n by using integr part[..] 2) let V_n = Σ_(k=1) ^n k(−1)^k = −1+2 −3+4+.....(nterms) is lim_(n→+∞) V_n exist find V_n by using integr part[..]

$$\left.\mathrm{1}\right){let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \:=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+...\left({n}+\mathrm{1}\:{terms}\right) \\ $$$${is}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} {exist}\:?\:\:{find}\:{U}_{{n}} \:{by}\:{using}\:{integr}\:{part}\left[..\right] \\ $$$$\left.\mathrm{2}\right)\:{let}\:{V}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left(−\mathrm{1}\right)^{{k}} \:\:=\:−\mathrm{1}+\mathrm{2}\:−\mathrm{3}+\mathrm{4}+.....\left({nterms}\right) \\ $$$${is}\:{lim}_{{n}\rightarrow+\infty} {V}_{{n}} \:{exist}\: \\ $$$${find}\:{V}_{{n}} {by}\:{using}\:{integr}\:{part}\left[..\right] \\ $$

Question Number 61535    Answers: 0   Comments: 0

calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}\:{dx} \\ $$

Question Number 61534    Answers: 0   Comments: 0

calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0

$${calculate}\:{f}\left({a}\right)\:=\int\int_{{W}} \:\left({x}+{ay}\right){e}^{−{x}} \:{e}^{−{ay}} {dxdy}\:{with} \\ $$$${W}_{{a}} =\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}\geqslant\mathrm{0}\:,{y}\geqslant\mathrm{0}\:\:\:,\:{x}+{ay}\:\leqslant\mathrm{1}\:\right\}\:\:\:{a}>\mathrm{0} \\ $$

Question Number 61533    Answers: 0   Comments: 2

∫∫_([0,1]^2 ) ((x−y)/((x^2 +3y^(2 ) +1)^2 )) dxdy

$$\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\:\frac{{x}−{y}}{\left({x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}\:} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{dxdy}\: \\ $$

Question Number 61532    Answers: 0   Comments: 0

prove that (((a+b)^n )/(a^n +b^n )) <2^(n−1) ∀ n>1 (n natural)

$${prove}\:{that}\:\:\:\frac{\left({a}+{b}\right)^{{n}} }{{a}^{{n}} \:+{b}^{{n}} }\:<\mathrm{2}^{{n}−\mathrm{1}} \:\:\:\:\:\forall\:{n}>\mathrm{1}\:\:\:\:\left({n}\:{natural}\right) \\ $$

Question Number 61530    Answers: 0   Comments: 5

let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{−\mathrm{2}{n}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:\:\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 61529    Answers: 0   Comments: 0

find ∫_0 ^∞ x^2 e^(−zx^2 ) dx with z from C

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}} {e}^{−{zx}^{\mathrm{2}} } {dx}\:\:{with}\:{z}\:{from}\:{C}\: \\ $$

Question Number 61528    Answers: 0   Comments: 4

find ∫_0 ^∞ cos(zx^2 )dx with z ∈ C .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:{with}\:{z}\:\in\:{C}\:. \\ $$

Question Number 61526    Answers: 0   Comments: 0

Solve for n: D/A×{1−((P×((((1+i)^n ×i)/((1+i)^n −1))))/((P×((((1+i)^r ×i)/((1+i)^r −1))))−(R/i)×[((1/n)+i)×((((1+i)^r ×i)/((1+i)^r −1)))−((1/n)+i)×((((1+i)^n ×i)/((1+i)^n −1)))]))}−1=0

$${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$

Question Number 61522    Answers: 1   Comments: 0

I=∫((sin x.e^(cos x) −(sin x+cos x)e^((sin x+cos x)) )/(e^(2sin x) −2e^(sin x) +1))dx

$${I}=\int\frac{\mathrm{sin}\:{x}.{e}^{\mathrm{cos}\:{x}} −\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right){e}^{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)} }{{e}^{\mathrm{2sin}\:{x}} −\mathrm{2}{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}{dx} \\ $$

Question Number 61521    Answers: 1   Comments: 0

  Pg 1495      Pg 1496      Pg 1497      Pg 1498      Pg 1499      Pg 1500      Pg 1501      Pg 1502      Pg 1503      Pg 1504   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com