Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1500
Question Number 60697 Answers: 1 Comments: 1
Question Number 60695 Answers: 0 Comments: 1
$${solve}\:\sqrt{\mathrm{3}+{x}^{\mathrm{2}} }{y}^{''} \:\:\:\:−\left(\mathrm{2}{x}+\mathrm{1}\right){y}^{'} \:={x}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{2}} \:\:\:} \\ $$
Question Number 60694 Answers: 0 Comments: 0
$${solve}\:\:\left({x}^{\mathrm{3}} −{x}\right){y}^{''} \:\:\:−\mathrm{2}{x}\:{y}^{'} \:+\mathrm{3}{y}\:={xln}\left(\mathrm{1}+{x}\right) \\ $$
Question Number 60693 Answers: 0 Comments: 0
$${solve}\:\:\left(\mathrm{2}+{e}^{−{x}} \right){y}^{'} \:\:+\left(\mathrm{2}{x}+{e}^{{x}} \right){y}\:={e}^{{x}} {sinx}\: \\ $$
Question Number 60692 Answers: 0 Comments: 0
$${find}\:\:\int\:\:{arctan}\left(\mathrm{2}{cosx}\right){dx}\: \\ $$
Question Number 60691 Answers: 0 Comments: 1
$${calculate}\:{f}\left({a}\right)\:=\:\int\:\:\:\left(\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }\right)\:{arctan}\left({x}+\frac{{a}}{{x}}\right){dx}\:\:\:{with}\:{a}\:{real}\:. \\ $$
Question Number 60690 Answers: 0 Comments: 0
$${find}\:\int\:\left({x}+\mathrm{3}\right)\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\: \\ $$
Question Number 60688 Answers: 0 Comments: 0
$${find}\:\int\:\:\:{e}^{−{x}} \sqrt{\frac{\mathrm{3}−{x}}{\mathrm{3}+{x}}}{dx} \\ $$
Question Number 60687 Answers: 1 Comments: 2
$${calculate}\:\:\int\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{2}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\mathrm{2}{x}}\:{dx} \\ $$
Question Number 60685 Answers: 1 Comments: 1
$${find}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left({nx}\right)}{{sin}^{\mathrm{2}} \left({nx}\right)}{dx}\: \\ $$
Question Number 60686 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={cos}\left(\mathrm{2}{x}\right)\:\:\:\:,\mathrm{2}\pi\:{periodic}\:,\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 60683 Answers: 0 Comments: 0
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{{n}} {xdx}\:\:\:\:{with}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 60682 Answers: 0 Comments: 1
$${simplify}\:\:\:\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{sin}^{{k}} \left({x}\right){cos}\left({kx}\right)\:\:\: \\ $$
Question Number 60681 Answers: 0 Comments: 1
$${calculate}\:\:{L}\left({e}^{−\mathrm{2}{x}} {sin}\left(\alpha{x}\right)\right)\:\:\:\:\alpha\:{real}\:\:\:{and}\:{L}\:{laplace}\:{transform} \\ $$
Question Number 60680 Answers: 0 Comments: 2
$${study}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{{ln}\left(\mathrm{1}−{x}\right)}{dx} \\ $$
Question Number 60679 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{dx} \\ $$
Question Number 60678 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:{dx} \\ $$
Question Number 60677 Answers: 0 Comments: 0
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}^{\mathrm{2}} \pi}{{n}^{\mathrm{3}} }\right)\:\:{determine}\:{lim}_{{n}\rightarrow\infty} \:\:{S}_{{n}} \\ $$
Question Number 60676 Answers: 1 Comments: 2
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}^{\mathrm{2}} }\right)\:\:\:\:\:{find}\:{lim}_{{n}\rightarrow\infty} \:\:{S}_{{n}} \\ $$
Question Number 60670 Answers: 1 Comments: 2
Question Number 60808 Answers: 1 Comments: 8
$${Prove}\:\:{or}\:\:{disprove}\:\:{that}\:\:{there}\:\:{is} \\ $$$${a}\:\:{positive}\:\:{integer}\:\:{suitable}\:\:{for} \\ $$$$\:\:\:\:\:\:\:{n}^{\mathrm{3}} \:+\:\mathrm{1}\:\:\:\mid\:\:\:{n}!\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:{n}!\:\:\:{is}\:\:{divided}\:\:{by}\:\:{n}^{\mathrm{3}} \:+\:\mathrm{1}\:\:\right) \\ $$$${n}\:\:\in\:\:\mathbb{Z}^{+} \\ $$
Question Number 60675 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left[\frac{{ln}^{\mathrm{2}} \left({sin}\left({x}\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sinx}\right)}\right]\frac{{ln}\left({cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx} \\ $$
Question Number 60662 Answers: 0 Comments: 0
Question Number 60659 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60658 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60644 Answers: 0 Comments: 0
Pg 1495 Pg 1496 Pg 1497 Pg 1498 Pg 1499 Pg 1500 Pg 1501 Pg 1502 Pg 1503 Pg 1504
Terms of Service
Privacy Policy
Contact: info@tinkutara.com