Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1500
Question Number 61635 Answers: 1 Comments: 0
$$\mathrm{2}\left(\int_{\mathrm{0}} ^{\:{x}} {y}^{\mathrm{3}} \mathrm{cos}\:{xdx}\right)\left[\frac{{yd}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{ky}^{\mathrm{5}} \mathrm{sin}\:{x}\:\:\:\:\:;\:\: \\ $$$$\:\:{y}\left(\mathrm{0}\right)={a},\:{y}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$$$\:{solve}\:{the}\:{differential}\:{equation}. \\ $$$$\left({Laplace}\:{tranforms}\:{might}\right. \\ $$$$\left.\:\:\:\:{be}\:{helpful},\:{i}\:{think}\right). \\ $$
Question Number 61622 Answers: 0 Comments: 0
$${If}\:\:\:\sqrt{{x}\:\sqrt{\left({x}+\mathrm{1}\right)\:\sqrt{\left({x}+\mathrm{2}\right)\:\sqrt{\left({x}+\mathrm{3}\right)\:\sqrt{...}}}}}\:\:\:=\:\:\:\mathrm{2019} \\ $$$${so}\:\:\sqrt{{x}\:+\:\sqrt{\left({x}+\mathrm{1}\right)\:+\:\:\sqrt{\left({x}+\mathrm{2}\right)\:+\:\:\sqrt{\left({x}+\mathrm{3}\right)\:+\:\:\sqrt{...}}}}}\:\:\:=\:\:\:? \\ $$$$ \\ $$
Question Number 61667 Answers: 1 Comments: 0
$$\int\sqrt{{tan}\left({x}\right)}\:{dx}\: \\ $$
Question Number 61625 Answers: 1 Comments: 0
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+...}}}}}= \\ $$
Question Number 61614 Answers: 0 Comments: 1
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{d}}{{dx}}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right){dx}\:= \\ $$
Question Number 61613 Answers: 1 Comments: 1
$${S}\:\:=\:\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2018}}\:+\:\frac{\mathrm{5}}{\mathrm{2018}^{\mathrm{2}} }\:+\:\frac{\mathrm{7}}{\mathrm{2018}^{\mathrm{3}} }\:+\:... \\ $$$$\mathrm{4}{S}\:−\:{S}^{\mathrm{2}} \:\:=\:\:? \\ $$
Question Number 61605 Answers: 0 Comments: 7
$${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$
Question Number 61601 Answers: 1 Comments: 1
$${calvulate}\:\int\int_{{w}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){e}^{−{x}−{y}} {dxdy} \\ $$$${with}\:{W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$
Question Number 61591 Answers: 1 Comments: 8
$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$
Question Number 61569 Answers: 1 Comments: 3
Question Number 61566 Answers: 1 Comments: 0
$$\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\sqrt{{ln}\left(\mathrm{9}−\left(\mathrm{6}−{x}\right)\right.}}{\sqrt{{ln}\left(\mathrm{9}−{x}\right)}\:+\:\sqrt{{ln}\left(\mathrm{3}−{x}\right)}}\:{dx} \\ $$
Question Number 61559 Answers: 2 Comments: 1
Question Number 61554 Answers: 1 Comments: 1
Question Number 61545 Answers: 0 Comments: 0
Question Number 61537 Answers: 2 Comments: 2
Question Number 61536 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \:=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+...\left({n}+\mathrm{1}\:{terms}\right) \\ $$$${is}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} {exist}\:?\:\:{find}\:{U}_{{n}} \:{by}\:{using}\:{integr}\:{part}\left[..\right] \\ $$$$\left.\mathrm{2}\right)\:{let}\:{V}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left(−\mathrm{1}\right)^{{k}} \:\:=\:−\mathrm{1}+\mathrm{2}\:−\mathrm{3}+\mathrm{4}+.....\left({nterms}\right) \\ $$$${is}\:{lim}_{{n}\rightarrow+\infty} {V}_{{n}} \:{exist}\: \\ $$$${find}\:{V}_{{n}} {by}\:{using}\:{integr}\:{part}\left[..\right] \\ $$
Question Number 61535 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}\:{dx} \\ $$
Question Number 61534 Answers: 0 Comments: 0
$${calculate}\:{f}\left({a}\right)\:=\int\int_{{W}} \:\left({x}+{ay}\right){e}^{−{x}} \:{e}^{−{ay}} {dxdy}\:{with} \\ $$$${W}_{{a}} =\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}\geqslant\mathrm{0}\:,{y}\geqslant\mathrm{0}\:\:\:,\:{x}+{ay}\:\leqslant\mathrm{1}\:\right\}\:\:\:{a}>\mathrm{0} \\ $$
Question Number 61533 Answers: 0 Comments: 2
$$\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\:\frac{{x}−{y}}{\left({x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}\:} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{dxdy}\: \\ $$
Question Number 61532 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\:\frac{\left({a}+{b}\right)^{{n}} }{{a}^{{n}} \:+{b}^{{n}} }\:<\mathrm{2}^{{n}−\mathrm{1}} \:\:\:\:\:\forall\:{n}>\mathrm{1}\:\:\:\:\left({n}\:{natural}\right) \\ $$
Question Number 61530 Answers: 0 Comments: 5
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{−\mathrm{2}{n}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:\:\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 61529 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}} {e}^{−{zx}^{\mathrm{2}} } {dx}\:\:{with}\:{z}\:{from}\:{C}\: \\ $$
Question Number 61528 Answers: 0 Comments: 4
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:{with}\:{z}\:\in\:{C}\:. \\ $$
Question Number 61526 Answers: 0 Comments: 0
$${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$
Question Number 61522 Answers: 1 Comments: 0
$${I}=\int\frac{\mathrm{sin}\:{x}.{e}^{\mathrm{cos}\:{x}} −\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right){e}^{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)} }{{e}^{\mathrm{2sin}\:{x}} −\mathrm{2}{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}{dx} \\ $$
Question Number 61521 Answers: 1 Comments: 0
Pg 1495 Pg 1496 Pg 1497 Pg 1498 Pg 1499 Pg 1500 Pg 1501 Pg 1502 Pg 1503 Pg 1504
Terms of Service
Privacy Policy
Contact: info@tinkutara.com