Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1490

Question Number 59164    Answers: 1   Comments: 0

5^x =0 find x

$$\mathrm{5}^{\mathrm{x}} =\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 59163    Answers: 0   Comments: 0

calculate A_n =∫∫_W_n ((1−(√(x^2 +y^2 )))/(1+(√(x^2 +y^2 )))) dxdy with W_n =](1/n),n[^2 2) find lim_(n→+∞) A_n

$$\left.{calculate}\:{A}_{{n}} =\int\int_{{W}_{{n}} } \:\:\:\frac{\mathrm{1}−\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:{dxdy}\:\:\:{with}\:{W}_{{n}} \:=\right]\frac{\mathrm{1}}{{n}},{n}\left[^{\mathrm{2}} \right. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$

Question Number 59162    Answers: 0   Comments: 0

calculate ∫∫_D (√(x^2 −y^2 ))xy dxdy with D ={(x,y)∈ R^2 /0≤y≤1 and 2 ≤x ≤5 }

$${calculate}\:\:\int\int_{{D}} \:\:\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{xy}\:{dxdy}\:\:{with} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:\:\:/\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\:\leqslant{x}\:\leqslant\mathrm{5}\:\right\} \\ $$

Question Number 59161    Answers: 0   Comments: 0

calculatef(a)= ∫_0 ^∞ ((ln(a^2 +x^2 ))/(a^2 +x^2 ))dx with >0 1) calculate ∫_0 ^∞ ((ln(2+x^2 ))/(2+x^2 ))dx and ∫_0 ^∞ ((ln(3+x^2 ))/(3+x^2 )) dx .

$${calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}{\mathrm{2}+{x}^{\mathrm{2}} }{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\mathrm{3}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 59152    Answers: 0   Comments: 1

Question Number 59147    Answers: 2   Comments: 0

Σ_(1°) ^(89°) log_2 tan r°

$$\underset{\mathrm{1}°} {\overset{\mathrm{89}°} {\sum}}\:{log}_{\mathrm{2}} {tan}\:{r}° \\ $$

Question Number 59135    Answers: 0   Comments: 0

Question Number 59133    Answers: 2   Comments: 0

The total number of terms in the expression (x + a)^(100) + (x − a)^(100) after simplification is ?

$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expression}\:\:\:\left(\mathrm{x}\:+\:\mathrm{a}\right)^{\mathrm{100}} \:+\:\left(\mathrm{x}\:−\:\mathrm{a}\right)^{\mathrm{100}} \\ $$$$\mathrm{after}\:\mathrm{simplification}\:\mathrm{is}\:\:? \\ $$

Question Number 59131    Answers: 2   Comments: 0

a, b, c ∈ R a + b + c = 5 Prove that (√(a^2 + b^2 − 2b + 1)) + (√(b^2 + c^2 − 2c + 1)) + (√(c^2 + a^2 − 2a + 1)) ≥ (√(29))

$${a},\:{b},\:{c}\:\:\in\:\:\mathbb{R} \\ $$$${a}\:+\:{b}\:+\:{c}\:\:=\:\:\mathrm{5} \\ $$$${Prove}\:\:{that} \\ $$$$\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:−\:\mathrm{2}{b}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:\mathrm{2}{c}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{c}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} \:−\:\mathrm{2}{a}\:+\:\mathrm{1}}\:\:\:\geqslant\:\:\sqrt{\mathrm{29}} \\ $$

Question Number 59129    Answers: 0   Comments: 0

Question Number 59121    Answers: 1   Comments: 0

Question Number 59114    Answers: 4   Comments: 1

Question Number 59113    Answers: 1   Comments: 0

Let a is a real number . How many solutions can the equation in θ (sin θ + cos θ)(sin θ cos θ − 1) = a have for 0 < θ < (π/2) ?

$${Let}\:\:{a}\:\:{is}\:\:{a}\:\:{real}\:\:{number}\:.\:\:{How}\:\:{many}\:\:{solutions} \\ $$$${can}\:\:{the}\:\:{equation}\:\:{in}\:\:\theta\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\right)\left(\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:−\:\mathrm{1}\right)\:\:=\:\:{a} \\ $$$${have}\:\:{for}\:\:\mathrm{0}\:<\:\theta\:<\:\frac{\pi}{\mathrm{2}}\:\:? \\ $$

Question Number 59104    Answers: 0   Comments: 0

i want of ask in mechanics is this possible?? power=((work done)/(time taken)) if power = p_w , Work= W_d , and time=t ⇒ p_w = (W_d /t) but W_d = force(f)×distance(s) W_d = fs ⇒ p_w = ((f×s)/t) p_w = f × (s/t)(distance/time) p_w = f × velocity but f=ma p_w = m×a×v rearranging ⇒ p_(w ) = m×v×a p_w = momentum(P)×Acceleration(a) Power = momentum × Acceleration. the momentum of a system is directly propotional to the power of that system but will have a minimum momentum when accelerating. what do you think?

$${i}\:{want}\:{of}\:{ask}\:{in}\:{mechanics}\:{is}\:{this} \\ $$$${possible}?? \\ $$$$ \\ $$$${power}=\frac{{work}\:{done}}{{time}\:{taken}} \\ $$$${if}\:{power}\:=\:{p}_{{w}} \:,\:{Work}=\:{W}_{{d}} ,\:{and}\:{time}={t} \\ $$$$\Rightarrow\:{p}_{{w}} =\:\frac{{W}_{{d}} }{{t}} \\ $$$${but}\:{W}_{{d}} =\:{force}\left({f}\right)×{distance}\left({s}\right) \\ $$$$\:\:\:\:\:\:\:\:{W}_{{d}} =\:{fs} \\ $$$$\Rightarrow\:{p}_{{w}} =\:\frac{{f}×{s}}{{t}} \\ $$$$\:\:\:\:\:{p}_{{w}} =\:{f}\:×\:\frac{{s}}{{t}}\left({distance}/{time}\right) \\ $$$$\:\:\:{p}_{{w}} =\:{f}\:×\:{velocity} \\ $$$$\:\:\:{but}\:{f}={ma} \\ $$$${p}_{{w}} =\:{m}×{a}×{v} \\ $$$${rearranging} \\ $$$$\Rightarrow\:{p}_{{w}\:} =\:{m}×{v}×{a} \\ $$$$\:\:\:\:\:\:{p}_{{w}} =\:{momentum}\left({P}\right)×{Acceleration}\left({a}\right) \\ $$$${Power}\:=\:{momentum}\:×\:{Acceleration}. \\ $$$${the}\:{momentum}\:{of}\:{a}\:{system}\:{is}\:{directly} \\ $$$${propotional}\:{to}\:{the}\:{power}\:{of}\:{that}\:{system} \\ $$$${but}\:{will}\:{have}\:{a}\:{minimum}\:{momentum} \\ $$$${when}\:{accelerating}. \\ $$$$ \\ $$$${what}\:{do}\:{you}\:{think}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 59103    Answers: 0   Comments: 0

Question Number 59102    Answers: 1   Comments: 0

use remainder theorem to factorize completetly the expression x^3 (y − z) + y^3 (z − x) + z^3 (x − y)

$$\mathrm{use}\:\mathrm{remainder}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{factorize}\:\mathrm{completetly}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\:\:\:\:\:\mathrm{x}^{\mathrm{3}} \left(\mathrm{y}\:−\:\mathrm{z}\right)\:+\:\mathrm{y}^{\mathrm{3}} \left(\mathrm{z}\:−\:\mathrm{x}\right)\:+\:\mathrm{z}^{\mathrm{3}} \left(\mathrm{x}\:−\:\mathrm{y}\right) \\ $$

Question Number 59100    Answers: 1   Comments: 4

Question Number 59099    Answers: 0   Comments: 0

A sample of 20 cigarettes is tested to determine nicotine vomtent and the average value observed was 1.2mg.Compute a 99 percentage two−sided confidence interval or the mean nicotine content if it is known that the standard deviation of a cigarette′s nicotine content is 0.2mg.

$${A}\:{sample}\:{of}\:\mathrm{20}\:{cigarettes}\:{is}\:{tested}\:{to}\:{determine}\:{nicotine}\:{vomtent} \\ $$$${and}\:{the}\:{average}\:{value}\:{observed}\:{was}\:\mathrm{1}.\mathrm{2}{mg}.{Compute} \\ $$$${a}\:\mathrm{99}\:{percentage}\:{two}−{sided}\:{confidence}\:{interval} \\ $$$${or}\:{the}\:{mean}\:{nicotine}\:{content}\:{if}\:{it}\:{is}\:{known}\:{that}\:{the}\:{standard}\:{deviation}\:{of}\:{a}\:{cigarette}'{s}\: \\ $$$${nicotine}\:{content}\:{is}\:\mathrm{0}.\mathrm{2}{mg}. \\ $$

Question Number 59098    Answers: 0   Comments: 0

A sample of 20 cigarettes is tested to determine nicotine vomtent and the average value observed was 1.2mg.Compute a 99 percentage two−sided confidence interval or the mean nicotine content if it is known that the standard deviation of a cigarette′s nicotine content is 0.2mg.

$${A}\:{sample}\:{of}\:\mathrm{20}\:{cigarettes}\:{is}\:{tested}\:{to}\:{determine}\:{nicotine}\:{vomtent} \\ $$$${and}\:{the}\:{average}\:{value}\:{observed}\:{was}\:\mathrm{1}.\mathrm{2}{mg}.{Compute} \\ $$$${a}\:\mathrm{99}\:{percentage}\:{two}−{sided}\:{confidence}\:{interval} \\ $$$${or}\:{the}\:{mean}\:{nicotine}\:{content}\:{if}\:{it}\:{is}\:{known}\:{that}\:{the}\:{standard}\:{deviation}\:{of}\:{a}\:{cigarette}'{s}\: \\ $$$${nicotine}\:{content}\:{is}\:\mathrm{0}.\mathrm{2}{mg}. \\ $$

Question Number 59097    Answers: 0   Comments: 0

A sample of 20 cigarettes is tested to determine nicotine vomtent and the average value observed was 1.2mg.Compute a 99 percentage two−sided confidence interval or the mean nicotine content if it is known that the standard deviation of a cigarette′s nicotine content is 0.2mg.

$${A}\:{sample}\:{of}\:\mathrm{20}\:{cigarettes}\:{is}\:{tested}\:{to}\:{determine}\:{nicotine}\:{vomtent} \\ $$$${and}\:{the}\:{average}\:{value}\:{observed}\:{was}\:\mathrm{1}.\mathrm{2}{mg}.{Compute} \\ $$$${a}\:\mathrm{99}\:{percentage}\:{two}−{sided}\:{confidence}\:{interval} \\ $$$${or}\:{the}\:{mean}\:{nicotine}\:{content}\:{if}\:{it}\:{is}\:{known}\:{that}\:{the}\:{standard}\:{deviation}\:{of}\:{a}\:{cigarette}'{s}\: \\ $$$${nicotine}\:{content}\:{is}\:\mathrm{0}.\mathrm{2}{mg}. \\ $$

Question Number 59095    Answers: 1   Comments: 0

An building student makes a floor plan of a building on a scale of 1:75.At what % change will he need to convert it to a scale of 1:250?

$${An}\:{building}\:{student}\:{makes}\:{a}\:{floor} \\ $$$${plan}\:{of}\:{a}\:{building}\:{on}\:{a}\:{scale}\:{of}\:\mathrm{1}:\mathrm{75}.{At} \\ $$$${what}\:\%\:{change}\:{will}\:{he}\:{need}\:{to}\:{convert} \\ $$$${it}\:{to}\:{a}\:{scale}\:{of}\:\mathrm{1}:\mathrm{250}? \\ $$

Question Number 59094    Answers: 1   Comments: 1

Question Number 59092    Answers: 1   Comments: 0

what % increase will it be to transform an image on a scale of 1:75 to 1:300?

$${what}\:\%\:{increase}\:{will}\:{it}\:{be}\:{to}\:{transform} \\ $$$${an}\:{image}\:{on}\:{a}\:{scale}\:{of}\:\mathrm{1}:\mathrm{75}\:{to}\:\mathrm{1}:\mathrm{300}? \\ $$

Question Number 59089    Answers: 1   Comments: 0

Question Number 59080    Answers: 0   Comments: 0

Question Number 59079    Answers: 0   Comments: 0

  Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490      Pg 1491      Pg 1492      Pg 1493      Pg 1494   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com