Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1490

Question Number 60675    Answers: 0   Comments: 0

∫_0 ^(π/2) ln[((ln^2 (sin(x)))/(π^2 +ln^2 (sinx)))]((ln(cos(x)))/(tan(x)))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left[\frac{{ln}^{\mathrm{2}} \left({sin}\left({x}\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sinx}\right)}\right]\frac{{ln}\left({cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx} \\ $$

Question Number 60662    Answers: 0   Comments: 0

Question Number 60659    Answers: 1   Comments: 1

find ∫_0 ^1 ln(x)ln(1−x^2 )dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 60658    Answers: 0   Comments: 1

calculate ∫_0 ^1 ln(x)ln(1−x)ln(1−x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 60644    Answers: 0   Comments: 0

Question Number 60637    Answers: 1   Comments: 1

Question Number 60636    Answers: 1   Comments: 0

Number of different permutation of MISSISSIPI is ...

$${Number}\:\:{of}\:\:{different}\:\:{permutation}\:\:{of}\:\:\:{MISSISSIPI}\:\:\:{is}\:\:... \\ $$

Question Number 60635    Answers: 2   Comments: 0

Question Number 60647    Answers: 0   Comments: 3

Question Number 60628    Answers: 0   Comments: 0

Who know dynamics about?

$${Who}\:\:{know}\:{dynamics}\:{about}? \\ $$

Question Number 60620    Answers: 3   Comments: 0

4^x + 9^x + 25^x = 6^x + 10^x + 15^x x = ?

$$\mathrm{4}^{{x}} \:+\:\mathrm{9}^{{x}} \:+\:\mathrm{25}^{{x}} \:\:=\:\:\mathrm{6}^{{x}} \:+\:\mathrm{10}^{{x}} \:+\:\mathrm{15}^{{x}} \\ $$$${x}\:\:=\:\:? \\ $$

Question Number 60623    Answers: 0   Comments: 0

What are all intregal methods that exist like trigonometry sub. Gaussian method feyman method ?

$$\mathrm{W}{hat}\:{are}\:{all}\:{intregal}\:{methods}\:{that}\:{exist} \\ $$$${like}\:{trigonometry}\:{sub}.\:{Gaussian}\:{method}\:{feyman}\:{method}\:? \\ $$$$ \\ $$$$ \\ $$

Question Number 60621    Answers: 0   Comments: 5

if π is rational then there exists a I_n =(v^(2n) /(n!))∫_0 ^π x^n (x−π)^n sin(x)dx can someone give a easier way to expaned this

$${if}\:\pi\:{is}\:{rational}\:{then}\:{there} \\ $$$${exists}\:{a}\:{I}_{{n}} =\frac{{v}^{\mathrm{2}{n}} }{{n}!}\underset{\mathrm{0}} {\overset{\pi} {\int}}{x}^{{n}} \left({x}−\pi\right)^{{n}} {sin}\left({x}\right){dx} \\ $$$${can}\:{someone}\:{give}\:{a}\:{easier}\:{way}\:{to}\:{expaned}\:{this} \\ $$

Question Number 60631    Answers: 0   Comments: 0

prove that∫_(−∞) ^∞ x^5 e^(−x^2 ) sin(x^3 ) dx=0.25474

$$\mathrm{prove}\:\mathrm{that}\underset{−\infty} {\overset{\infty} {\int}}\mathrm{x}^{\mathrm{5}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{sin}\left(\mathrm{x}^{\mathrm{3}} \right)\:\mathrm{dx}=\mathrm{0}.\mathrm{25474} \\ $$

Question Number 60611    Answers: 1   Comments: 0

prove that ∫_(−∞) ^∞ x^2 e^(−x^2 ) cos(x^2 )sin(x^2 ) dx = (((√π)sin((3/2)tan^(−1) (2)))/(4 ((125))^(1/4) )) anyone can help me with this please

$${prove}\:{that}\:\underset{−\infty} {\overset{\infty} {\int}}{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {cos}\left({x}^{\mathrm{2}} \right){sin}\left({x}^{\mathrm{2}} \right)\:{dx}\:=\:\frac{\sqrt{\pi}{sin}\left(\frac{\mathrm{3}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\right)}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\mathrm{125}}} \\ $$$${anyone}\:{can}\:{help}\:{me}\:{with}\:{this}\:{please} \\ $$$$ \\ $$

Question Number 60597    Answers: 0   Comments: 3

Question Number 60588    Answers: 0   Comments: 1

Question Number 60587    Answers: 2   Comments: 1

x∈[0,(π/2)] sinx+cosx=tg3x

$$\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}=\boldsymbol{\mathrm{tg}}\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$

Question Number 60586    Answers: 0   Comments: 1

find ∫_0 ^1 ((ln^2 (x))/((1−x^2 )^2 ))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 60577    Answers: 1   Comments: 1

2(√(1 + 3(√(1 + 5(√(1 + 7(√(1 + 11(√(1 + 13(√(1 + 17(√(...)))))))))))))) = x x = ?

$$\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{3}\sqrt{\mathrm{1}\:+\:\mathrm{5}\sqrt{\mathrm{1}\:+\:\mathrm{7}\sqrt{\mathrm{1}\:+\:\mathrm{11}\sqrt{\mathrm{1}\:+\:\mathrm{13}\sqrt{\mathrm{1}\:+\:\mathrm{17}\sqrt{...}}}}}}}\:\:=\:\:{x} \\ $$$${x}\:\:=\:\:? \\ $$

Question Number 60576    Answers: 1   Comments: 4

two faire dices are tossed together find the probability that the total score is atmost 4

$$\mathrm{two}\:\mathrm{faire}\:\mathrm{dices}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{together} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{total}\:\mathrm{score}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{4} \\ $$$$ \\ $$

Question Number 60545    Answers: 1   Comments: 0

Question Number 60536    Answers: 3   Comments: 0

cosx=sin3x find x with solution pllllllz

$$\mathrm{cosx}=\mathrm{sin3x} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{with}\:\mathrm{solution}\:\: \\ $$$$\mathrm{pllllllz} \\ $$

Question Number 60534    Answers: 0   Comments: 1

Question Number 60533    Answers: 1   Comments: 2

If A, B, C are angle of a triangle. Show that cos (1/2)C + cos (1/2)(A − B) = 2 sin (1/2)A sin (1/2)B

$$\mathrm{If}\:\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{C}\:+\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\:=\:\:\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{A}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B} \\ $$

Question Number 60527    Answers: 2   Comments: 1

  Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490      Pg 1491      Pg 1492      Pg 1493      Pg 1494   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com