Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1490
Question Number 60675 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left[\frac{{ln}^{\mathrm{2}} \left({sin}\left({x}\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sinx}\right)}\right]\frac{{ln}\left({cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx} \\ $$
Question Number 60662 Answers: 0 Comments: 0
Question Number 60659 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60658 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60644 Answers: 0 Comments: 0
Question Number 60637 Answers: 1 Comments: 1
Question Number 60636 Answers: 1 Comments: 0
$${Number}\:\:{of}\:\:{different}\:\:{permutation}\:\:{of}\:\:\:{MISSISSIPI}\:\:\:{is}\:\:... \\ $$
Question Number 60635 Answers: 2 Comments: 0
Question Number 60647 Answers: 0 Comments: 3
Question Number 60628 Answers: 0 Comments: 0
$${Who}\:\:{know}\:{dynamics}\:{about}? \\ $$
Question Number 60620 Answers: 3 Comments: 0
$$\mathrm{4}^{{x}} \:+\:\mathrm{9}^{{x}} \:+\:\mathrm{25}^{{x}} \:\:=\:\:\mathrm{6}^{{x}} \:+\:\mathrm{10}^{{x}} \:+\:\mathrm{15}^{{x}} \\ $$$${x}\:\:=\:\:? \\ $$
Question Number 60623 Answers: 0 Comments: 0
$$\mathrm{W}{hat}\:{are}\:{all}\:{intregal}\:{methods}\:{that}\:{exist} \\ $$$${like}\:{trigonometry}\:{sub}.\:{Gaussian}\:{method}\:{feyman}\:{method}\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 60621 Answers: 0 Comments: 5
$${if}\:\pi\:{is}\:{rational}\:{then}\:{there} \\ $$$${exists}\:{a}\:{I}_{{n}} =\frac{{v}^{\mathrm{2}{n}} }{{n}!}\underset{\mathrm{0}} {\overset{\pi} {\int}}{x}^{{n}} \left({x}−\pi\right)^{{n}} {sin}\left({x}\right){dx} \\ $$$${can}\:{someone}\:{give}\:{a}\:{easier}\:{way}\:{to}\:{expaned}\:{this} \\ $$
Question Number 60631 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\underset{−\infty} {\overset{\infty} {\int}}\mathrm{x}^{\mathrm{5}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{sin}\left(\mathrm{x}^{\mathrm{3}} \right)\:\mathrm{dx}=\mathrm{0}.\mathrm{25474} \\ $$
Question Number 60611 Answers: 1 Comments: 0
$${prove}\:{that}\:\underset{−\infty} {\overset{\infty} {\int}}{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {cos}\left({x}^{\mathrm{2}} \right){sin}\left({x}^{\mathrm{2}} \right)\:{dx}\:=\:\frac{\sqrt{\pi}{sin}\left(\frac{\mathrm{3}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\right)}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\mathrm{125}}} \\ $$$${anyone}\:{can}\:{help}\:{me}\:{with}\:{this}\:{please} \\ $$$$ \\ $$
Question Number 60597 Answers: 0 Comments: 3
Question Number 60588 Answers: 0 Comments: 1
Question Number 60587 Answers: 2 Comments: 1
$$\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}=\boldsymbol{\mathrm{tg}}\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$
Question Number 60586 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 60577 Answers: 1 Comments: 1
$$\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{3}\sqrt{\mathrm{1}\:+\:\mathrm{5}\sqrt{\mathrm{1}\:+\:\mathrm{7}\sqrt{\mathrm{1}\:+\:\mathrm{11}\sqrt{\mathrm{1}\:+\:\mathrm{13}\sqrt{\mathrm{1}\:+\:\mathrm{17}\sqrt{...}}}}}}}\:\:=\:\:{x} \\ $$$${x}\:\:=\:\:? \\ $$
Question Number 60576 Answers: 1 Comments: 4
$$\mathrm{two}\:\mathrm{faire}\:\mathrm{dices}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{together} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{total}\:\mathrm{score}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{4} \\ $$$$ \\ $$
Question Number 60545 Answers: 1 Comments: 0
Question Number 60536 Answers: 3 Comments: 0
$$\mathrm{cosx}=\mathrm{sin3x} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{with}\:\mathrm{solution}\:\: \\ $$$$\mathrm{pllllllz} \\ $$
Question Number 60534 Answers: 0 Comments: 1
Question Number 60533 Answers: 1 Comments: 2
$$\mathrm{If}\:\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{C}\:+\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\:=\:\:\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{A}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B} \\ $$
Question Number 60527 Answers: 2 Comments: 1
Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490 Pg 1491 Pg 1492 Pg 1493 Pg 1494
Terms of Service
Privacy Policy
Contact: info@tinkutara.com