Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1488

Question Number 61754    Answers: 0   Comments: 0

Question Number 61748    Answers: 0   Comments: 1

find ∫ (dx/(sin(2x)+tan(x)))dx

$${find}\:\:\int\:\:\:\:\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)+{tan}\left({x}\right)}{dx} \\ $$

Question Number 61752    Answers: 0   Comments: 0

solve the (de) (√(2x+1))y^′ −x^3 y = xln(x)

$${solve}\:{the}\:\left({de}\right)\:\:\:\:\:\:\sqrt{\mathrm{2}{x}+\mathrm{1}}{y}^{'} \:−{x}^{\mathrm{3}} {y}\:\:=\:{xln}\left({x}\right) \\ $$

Question Number 61751    Answers: 0   Comments: 0

use newton method to solve the equation x^4 −3x−1 =0

$${use}\:{newton}\:{method}\:{to}\:{solve}\:{the}\:{equation}\:\:{x}^{\mathrm{4}} −\mathrm{3}{x}−\mathrm{1}\:=\mathrm{0} \\ $$

Question Number 61750    Answers: 0   Comments: 0

find ∫ ((x^2 −(√(x−1)))/(2(√(x^2 +3)))) dx

$$\:{find}\:\int\:\:\frac{{x}^{\mathrm{2}} −\sqrt{{x}−\mathrm{1}}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}\:{dx} \\ $$

Question Number 61749    Answers: 0   Comments: 0

find ∫ (dx/(cos(2x)+tan(x)))

$${find}\:\int\:\:\frac{{dx}}{{cos}\left(\mathrm{2}{x}\right)+{tan}\left({x}\right)} \\ $$

Question Number 61744    Answers: 0   Comments: 7

3xy^2 +x^3 =9 −−−−−(1) 3x^2 y+y^3 =18−−−−(2) Find x and y

$$\mathrm{3}{xy}^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{9}\:−−−−−\left(\mathrm{1}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {y}+{y}^{\mathrm{3}} =\mathrm{18}−−−−\left(\mathrm{2}\right) \\ $$$${Find}\:{x}\:{and}\:{y} \\ $$

Question Number 61738    Answers: 2   Comments: 0

Question Number 61735    Answers: 0   Comments: 0

∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x)))) dx =?

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right)\:{dx}\:=?\: \\ $$$$ \\ $$

Question Number 61733    Answers: 0   Comments: 1

Find the maximum volume tetrahedron inside an ellipsoid, parameters a,b,c .

$${Find}\:{the}\:{maximum} \\ $$$${volume}\:{tetrahedron}\:{inside}\:{an} \\ $$$${ellipsoid},\:{parameters}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:. \\ $$

Question Number 61721    Answers: 0   Comments: 0

calculate A =∫_0 ^∞ cos(x^n )dx and B =∫_0 ^∞ sin(x^n )dx with n≥2 (n integr natural)

$${calculate}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){dx} \\ $$$${and}\:{B}\:=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{{n}} \right){dx}\:\:{with} \\ $$$${n}\geqslant\mathrm{2}\:\:\left({n}\:{integr}\:{natural}\right) \\ $$

Question Number 61719    Answers: 0   Comments: 1

∫(dx/(2+sin(x)))

$$\int\frac{{dx}}{\mathrm{2}+{sin}\left({x}\right)} \\ $$

Question Number 61708    Answers: 0   Comments: 1

8+(4+3×2)

$$\mathrm{8}+\left(\mathrm{4}+\mathrm{3}×\mathrm{2}\right) \\ $$

Question Number 61707    Answers: 0   Comments: 1

6^(−3)

$$\mathrm{6}^{−\mathrm{3}} \\ $$

Question Number 61706    Answers: 0   Comments: 1

(7^(10) /7^7 )

$$\frac{\mathrm{7}^{\mathrm{10}} }{\mathrm{7}^{\mathrm{7}} } \\ $$

Question Number 61694    Answers: 1   Comments: 1

Question Number 61692    Answers: 0   Comments: 0

if(3/2)≤x≤5, prove:2(√(x+1))+(√(2x−3))+(√(15−3x))<2(√(19))

$${if}\frac{\mathrm{3}}{\mathrm{2}}\leqslant{x}\leqslant\mathrm{5}, \\ $$$${prove}:\mathrm{2}\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}−\mathrm{3}}+\sqrt{\mathrm{15}−\mathrm{3}{x}}<\mathrm{2}\sqrt{\mathrm{19}} \\ $$

Question Number 61691    Answers: 0   Comments: 0

f(x)=(√(x^4 −3x^2 +4))+(√(x^4 −3x^2 −8x+20)) find the minimum value of f(x)

$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}} \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 61700    Answers: 1   Comments: 0

Question Number 61724    Answers: 0   Comments: 6

Σ_(n≥0) n^2 x^n

$$\underset{{n}\geqslant\mathrm{0}} {\sum}{n}^{\mathrm{2}} {x}^{{n}} \\ $$$$ \\ $$

Question Number 61662    Answers: 0   Comments: 1

calculate ∫_(−(π/4)) ^(π/4) ((cosx)/(e^(1/x) +1)) dx

$${calculate}\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:{dx}\: \\ $$

Question Number 61661    Answers: 0   Comments: 1

1) calculate ∫∫_R^+^2 ((dxdy)/((1+x^2 )(1+y^2 ))) 2) find the value of ∫_0 ^∞ ((ln(x))/(x^2 −1)) dx .

$$\left.\mathrm{1}\right)\:{calculate}\:\int\int_{{R}^{+^{\mathrm{2}} } } \:\:\:\:\:\frac{{dxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:{dx}\:. \\ $$

Question Number 61660    Answers: 0   Comments: 1

let U_n = ∫_0 ^∞ (dt/((1+t^3 )^n )) dt (n≥1) 1) calculate (U_(n+1) /U_n ) 2) study the serie Σln((U_(n+1) /U_n )) and prove that lim_(n→+∞) U_n =0

$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:{dt}\:\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} } \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{serie}\:\Sigma{ln}\left(\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\right)\:\:{and}\:{prove}\:\:{that}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$

Question Number 61657    Answers: 0   Comments: 0

U_n and V_n are two sequences verify U_n =Σ_(k=0) ^n C_n ^k V_k determine V_n interms of U_k ,0≤k≤n

$${U}_{{n}} \:{and}\:{V}_{{n}} \:\:{are}\:{two}\:{sequences}\:\:{verify}\:\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{V}_{{k}} \\ $$$${determine}\:{V}_{{n}} \:\:{interms}\:{of}\:\:{U}_{{k}} \:\:\:\:\:\:\:,\mathrm{0}\leqslant{k}\leqslant{n} \\ $$

Question Number 61675    Answers: 1   Comments: 1

Question Number 61674    Answers: 1   Comments: 4

a.∫_( 0) ^( (𝛑/4)) (√(1+tgx)) dx=? b.∫_( 0) ^( 1) (√(1+lnx)) dx=?

$$\mathrm{a}.\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{tgx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{b}.\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{lnx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$

  Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490      Pg 1491      Pg 1492   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com