Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1487
Question Number 61724 Answers: 0 Comments: 6
$$\underset{{n}\geqslant\mathrm{0}} {\sum}{n}^{\mathrm{2}} {x}^{{n}} \\ $$$$ \\ $$
Question Number 61662 Answers: 0 Comments: 1
$${calculate}\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:{dx}\: \\ $$
Question Number 61661 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:\int\int_{{R}^{+^{\mathrm{2}} } } \:\:\:\:\:\frac{{dxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:{dx}\:. \\ $$
Question Number 61660 Answers: 0 Comments: 1
$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:{dt}\:\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} } \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{serie}\:\Sigma{ln}\left(\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\right)\:\:{and}\:{prove}\:\:{that}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$
Question Number 61657 Answers: 0 Comments: 0
$${U}_{{n}} \:{and}\:{V}_{{n}} \:\:{are}\:{two}\:{sequences}\:\:{verify}\:\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{V}_{{k}} \\ $$$${determine}\:{V}_{{n}} \:\:{interms}\:{of}\:\:{U}_{{k}} \:\:\:\:\:\:\:,\mathrm{0}\leqslant{k}\leqslant{n} \\ $$
Question Number 61675 Answers: 1 Comments: 1
Question Number 61674 Answers: 1 Comments: 4
$$\mathrm{a}.\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{tgx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{b}.\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{lnx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 61654 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{e}^{{x}} } {ln}\left({x}\right)\:{dx}\:=\:\mathrm{0}.\mathrm{27634} \\ $$
Question Number 61646 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={e}^{−{ax}} \:{arctan}\left(\mathrm{3}{x}\right)\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:\left({x}\right)\:{at}\:{integr}\:{serie}\:. \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{f}\left({x}\right){dx}\:. \\ $$
Question Number 61645 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{D}} \int\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }{dxdydz} \\ $$$${with}\:{D}\:=\left\{\left({x},{y},{z}\right)\:/\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:,\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:,\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$
Question Number 61652 Answers: 1 Comments: 1
$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$
Question Number 61651 Answers: 0 Comments: 4
$${let}\:{p}\left({x}\right)\:=\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} +\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){decompose}\:{inside}\:{C}\left[{x}\right]\:\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}\: \\ $$
Question Number 61650 Answers: 0 Comments: 4
$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}{xy} \\ $$
Question Number 61648 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{W}} \:\left({x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}}{dxdy}\:\:\:\:{with} \\ $$$${W}\:=\left\{\:\left({x},{y}\right)\:\in\:{R}^{\mathrm{2}} \:\:/\:\:\:\:\mathrm{1}\leqslant{x}\:\leqslant\sqrt{\mathrm{3}}\:\:{and}\:\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −\mathrm{2}{y}\:\leqslant\:\mathrm{2}\:\right\} \\ $$
Question Number 61635 Answers: 1 Comments: 0
$$\mathrm{2}\left(\int_{\mathrm{0}} ^{\:{x}} {y}^{\mathrm{3}} \mathrm{cos}\:{xdx}\right)\left[\frac{{yd}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{ky}^{\mathrm{5}} \mathrm{sin}\:{x}\:\:\:\:\:;\:\: \\ $$$$\:\:{y}\left(\mathrm{0}\right)={a},\:{y}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$$$\:{solve}\:{the}\:{differential}\:{equation}. \\ $$$$\left({Laplace}\:{tranforms}\:{might}\right. \\ $$$$\left.\:\:\:\:{be}\:{helpful},\:{i}\:{think}\right). \\ $$
Question Number 61622 Answers: 0 Comments: 0
$${If}\:\:\:\sqrt{{x}\:\sqrt{\left({x}+\mathrm{1}\right)\:\sqrt{\left({x}+\mathrm{2}\right)\:\sqrt{\left({x}+\mathrm{3}\right)\:\sqrt{...}}}}}\:\:\:=\:\:\:\mathrm{2019} \\ $$$${so}\:\:\sqrt{{x}\:+\:\sqrt{\left({x}+\mathrm{1}\right)\:+\:\:\sqrt{\left({x}+\mathrm{2}\right)\:+\:\:\sqrt{\left({x}+\mathrm{3}\right)\:+\:\:\sqrt{...}}}}}\:\:\:=\:\:\:? \\ $$$$ \\ $$
Question Number 61667 Answers: 1 Comments: 0
$$\int\sqrt{{tan}\left({x}\right)}\:{dx}\: \\ $$
Question Number 61625 Answers: 1 Comments: 0
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+...}}}}}= \\ $$
Question Number 61614 Answers: 0 Comments: 1
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{d}}{{dx}}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right){dx}\:= \\ $$
Question Number 61613 Answers: 1 Comments: 1
$${S}\:\:=\:\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2018}}\:+\:\frac{\mathrm{5}}{\mathrm{2018}^{\mathrm{2}} }\:+\:\frac{\mathrm{7}}{\mathrm{2018}^{\mathrm{3}} }\:+\:... \\ $$$$\mathrm{4}{S}\:−\:{S}^{\mathrm{2}} \:\:=\:\:? \\ $$
Question Number 61605 Answers: 0 Comments: 7
$${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$
Question Number 61601 Answers: 1 Comments: 1
$${calvulate}\:\int\int_{{w}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){e}^{−{x}−{y}} {dxdy} \\ $$$${with}\:{W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$
Question Number 61591 Answers: 1 Comments: 8
$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$
Question Number 61569 Answers: 1 Comments: 3
Question Number 61566 Answers: 1 Comments: 0
$$\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\sqrt{{ln}\left(\mathrm{9}−\left(\mathrm{6}−{x}\right)\right.}}{\sqrt{{ln}\left(\mathrm{9}−{x}\right)}\:+\:\sqrt{{ln}\left(\mathrm{3}−{x}\right)}}\:{dx} \\ $$
Question Number 61559 Answers: 2 Comments: 1
Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490 Pg 1491
Terms of Service
Privacy Policy
Contact: info@tinkutara.com