Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1487
Question Number 61818 Answers: 0 Comments: 3
$$\mathrm{Find}\:\:\:\frac{{dy}}{{dx}}\:\: \\ $$$${y}\:=\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right),\:\mathrm{0}<{x}<\mathrm{1} \\ $$
Question Number 61815 Answers: 0 Comments: 0
$$\mathrm{2}{H}_{\mathrm{2}} {S}+{SO}_{\mathrm{2}} =\mathrm{3}{S}+{H}_{\mathrm{2}} {O} \\ $$$${is}\:{this}\:{a}\:{disproportionation}\:{reaction}? \\ $$
Question Number 61811 Answers: 0 Comments: 0
Question Number 61810 Answers: 0 Comments: 0
Question Number 61809 Answers: 1 Comments: 1
Question Number 61807 Answers: 0 Comments: 0
Question Number 61804 Answers: 1 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{k}^{{n}} \:\:{k}!} \\ $$
Question Number 61803 Answers: 0 Comments: 3
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}{dx} \\ $$
Question Number 61801 Answers: 0 Comments: 3
$$\underset{\mathrm{2}\pi} {\overset{\mathrm{4}\pi} {\int}}\sqrt{\mathrm{1}−{cos}\left({x}\right)}\:{dx} \\ $$
Question Number 61799 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{a}\:=\:\mathrm{Cos}\alpha\:−\mathrm{iSin}\alpha\:\mathrm{and}\:\mathrm{b}\:=\:\mathrm{Cos}\beta\:−\mathrm{iSin}\beta \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\frac{\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{1}−\mathrm{ab}\right)}{\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{1}+\mathrm{ab}\right)}\:=\:\frac{\mathrm{Sin}\alpha+\mathrm{Sin}\beta}{\mathrm{Sin}\alpha−\mathrm{Sin}\beta} \\ $$
Question Number 61796 Answers: 0 Comments: 0
Question Number 61791 Answers: 1 Comments: 1
$$\underset{{x}\:\rightarrow\:\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{6}^{{x}} }{\mathrm{2}^{{x}} \:+\:\mathrm{4}^{{x}} }\:\:\:=\:\:\:\infty\:\:\:\:\:? \\ $$
Question Number 61785 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{3}−{x}^{\mathrm{2}} }} {\int}}\frac{{xy}\left(\mathrm{4}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }−{xy}}{\mathrm{3}}\:{dy} \\ $$
Question Number 61782 Answers: 0 Comments: 5
$${Any}\:\:{integer}\left({s}\right)\:\:{which}\:\:{fulfill} \\ $$$$\:\:\:\:\:\:\:\:\:\:{n}^{\mathrm{5}} \:−\:\mathrm{5}{n}^{\mathrm{3}} \:+\:\mathrm{5}{n}\:+\:\mathrm{1}\:\:\mid\:\:{n}!\:\:\:? \\ $$
Question Number 61778 Answers: 1 Comments: 0
$${Any}\:\:{integer}\left({s}\right)\:\:{which}\:\:{fulfill}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{n}^{\mathrm{3}} \:−\:\mathrm{5}{n}^{\mathrm{2}} \:+\:\mathrm{5}{n}\:+\:\mathrm{1}\:\:\mid\:\:{n}!\:\:\:\:? \\ $$
Question Number 61775 Answers: 0 Comments: 1
Question Number 61770 Answers: 0 Comments: 0
Question Number 61767 Answers: 0 Comments: 0
Question Number 61762 Answers: 2 Comments: 1
Question Number 61755 Answers: 1 Comments: 2
$$\mathrm{if}\:{f}\left({z}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} {z}^{{k}} ,{a}_{{k}} ,{z}\in\mathbb{C}.\mathrm{Prove} \\ $$$$ \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\underset{\mid{z}\mid={r}\:} {\int}\frac{{f}\left({z}\right)}{{z}^{{k}+\mathrm{1}} }{dz} \\ $$$$ \\ $$
Question Number 61754 Answers: 0 Comments: 0
Question Number 61748 Answers: 0 Comments: 1
$${find}\:\:\int\:\:\:\:\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)+{tan}\left({x}\right)}{dx} \\ $$
Question Number 61752 Answers: 0 Comments: 0
$${solve}\:{the}\:\left({de}\right)\:\:\:\:\:\:\sqrt{\mathrm{2}{x}+\mathrm{1}}{y}^{'} \:−{x}^{\mathrm{3}} {y}\:\:=\:{xln}\left({x}\right) \\ $$
Question Number 61751 Answers: 0 Comments: 0
$${use}\:{newton}\:{method}\:{to}\:{solve}\:{the}\:{equation}\:\:{x}^{\mathrm{4}} −\mathrm{3}{x}−\mathrm{1}\:=\mathrm{0} \\ $$
Question Number 61750 Answers: 0 Comments: 0
$$\:{find}\:\int\:\:\frac{{x}^{\mathrm{2}} −\sqrt{{x}−\mathrm{1}}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}\:{dx} \\ $$
Question Number 61749 Answers: 0 Comments: 0
$${find}\:\int\:\:\frac{{dx}}{{cos}\left(\mathrm{2}{x}\right)+{tan}\left({x}\right)} \\ $$
Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490 Pg 1491
Terms of Service
Privacy Policy
Contact: info@tinkutara.com