let u_(n+1) =(√(Σ_(k=1) ^n u_k )) with n>0 and u_1 =1
1)calculate u_2 ,u_3 ,u_4 and u_5
2)prove that ∀n≥2 u_(n+) ^2 =u_n ^2 +u_n
3)study the variation of u_n
4)prove that lim_(n→+∞) u_n =+∞
5)prove that u_(n+1) ∼u_n (n→+∞)
6)let v_n =u_(n+1) −u_n prove that (v_n ) converges and find its limit.
A normal chord to an
ellipse (x^2 /a^2 )+(y^2 /b^2 )=1
make an angle of 45^°
with the axis.prove
that the square of its
length is equal to
((32a^4 b^4 )/((a^2 +b^2 )^3 ))
If p = cos θ + i sinθ and q = cos φ + i sin φ
Show that:
(i) ((p − q)/(p + q)) = i tan (((θ − φ)/2))
(ii) (((p + q)(pq − 1))/((p − q)(pq + 1))) = ((sin θ + sin φ)/(sin θ − sin φ))