Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1486
Question Number 62538 Answers: 0 Comments: 0
Question Number 62587 Answers: 1 Comments: 1
$${three}\:{forces}\:{having}\:{equal}\:{magnitude} \\ $$$${s}\:{of}\:\mathrm{10}{N},\mathrm{20}{N}\:{and}\:\mathrm{30}{N}\:{make}\:{angles}\: \\ $$$${of}\:\mathrm{30}°,\mathrm{120}°\:{and}\:\mathrm{210}°\:{respectively}\:{with} \\ $$$${the}\:{positive}\:{direction}\:{of}\:{the}\:{x}\:{axis}. \\ $$$${By}\:{scale}\:{drawing}\:{find}\:{the}\:{magnitude} \\ $$$${and}\:{the}\:{direction}\:{of}\:{the}\:{resultant}\: \\ $$$${force} \\ $$
Question Number 62534 Answers: 1 Comments: 0
Question Number 62519 Answers: 1 Comments: 0
Question Number 62523 Answers: 1 Comments: 0
Question Number 62517 Answers: 4 Comments: 2
Question Number 62494 Answers: 0 Comments: 0
Question Number 62489 Answers: 3 Comments: 0
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:+\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:−\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}\:\:=\:\:\mathrm{3} \\ $$
Question Number 62486 Answers: 2 Comments: 1
Question Number 62468 Answers: 1 Comments: 1
Question Number 62462 Answers: 1 Comments: 0
Question Number 62609 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{5}\mid{x}\mid\:+\:\mathrm{4}\mid{y}\mid\:=\:\mathrm{4}\:\mathrm{and}\:\mathrm{2}\mid{x}\mid\:−\:\mathrm{4}\mid{y}\mid\:=\:\mathrm{10}, \\ $$$$\mathrm{then}\:\mathrm{find}\:{x}\:\mathrm{and}\:{y}. \\ $$
Question Number 62456 Answers: 1 Comments: 1
Question Number 62455 Answers: 0 Comments: 3
Question Number 62611 Answers: 0 Comments: 2
$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{a}+\mathrm{1}\right)=\mathrm{0}\:\mathrm{then} \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\_\_\_\_\_. \\ $$
Question Number 62610 Answers: 2 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{in} \\ $$$$\frac{\mathrm{1}}{{x}−\mathrm{1}}\:+\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:=\:\frac{\mathrm{3}}{{x}−\mathrm{3}}\:\:. \\ $$
Question Number 62453 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{for}\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$
Question Number 62452 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\:\:\mathrm{2014}!\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\mathrm{2017} \\ $$
Question Number 62449 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{digit}\:\mathrm{in}\:\:\:\:\mathrm{2}^{\mathrm{50}} \\ $$
Question Number 62448 Answers: 1 Comments: 1
Question Number 62440 Answers: 0 Comments: 2
$${let}\:{h}\left({x}\right)=\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{h}^{\left({n}\right)} \left({x}\right)\:{and}\:{h}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\left({x}\right){at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\mathrm{1} \\ $$
Question Number 62439 Answers: 0 Comments: 1
$${sove}\:{inside}\:{Z}/\mathrm{3}{Z}\:{the}\:{systeme} \\ $$$$\begin{cases}{\mathrm{5}{x}+\mathrm{7}{y}\:=\mathrm{10}}\\{\mathrm{2}{x}+\mathrm{5}{y}\:=\mathrm{8}}\end{cases} \\ $$$$ \\ $$
Question Number 62438 Answers: 0 Comments: 1
$${splve}\:{x}^{\mathrm{2}} {y}^{''} \:−\left({x}+\mathrm{1}\right){y}'\:\:\:=\left({x}+\mathrm{1}\right){e}^{−{x}} \\ $$$$ \\ $$$$ \\ $$
Question Number 62437 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\mathrm{1}+{xt}\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$${determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\mathrm{1}+\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$ \\ $$
Question Number 62435 Answers: 0 Comments: 2
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$
Question Number 62434 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={ch}\left({cosx}\right) \\ $$$$\left.\mathrm{1}\right){calculste}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Pg 1481 Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490
Terms of Service
Privacy Policy
Contact: info@tinkutara.com