Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1486
Question Number 62415 Answers: 0 Comments: 1
$${calculate}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {ln}\left({yt}\right)\:{dt}\:\:{with}\:{x}>\mathrm{0}\:{and}\:{y}>\mathrm{0}\:. \\ $$
Question Number 62414 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\:\frac{{e}^{{x}} }{\sqrt{{e}^{\mathrm{2}{x}} −\mathrm{1}}}{dx} \\ $$
Question Number 62413 Answers: 0 Comments: 0
$${calculate}\:\:{W}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{{n}} {xdx}\:\:\:\left(\:{n}\:{from}\:{N}\right)\:{and}\:{J}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {xdx} \\ $$
Question Number 62412 Answers: 0 Comments: 2
$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {dx} \\ $$
Question Number 62410 Answers: 0 Comments: 0
$$\:\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {ln}\left({t}\right)\:{dt}\:=−\gamma\:\:\:\:\:\:\:\left(\:\:\gamma\:{is}\:{the}\:{constant}\:{of}\:{euler}\right) \\ $$
Question Number 62399 Answers: 1 Comments: 0
$${What}\:\:{the}\:\:{definition}\:\:{of}\:\:{Claim}\:,\:{Theorem}\:,\:\:{and}\:\:{Lemma}\:\:? \\ $$$${When}\:\:{can}\:\:{we}\:\:{use}\:\:{them}\:\:{respectively}\:\:{for}\:\:{getting}\:\:{proof}\left({s}\right)\:? \\ $$
Question Number 62396 Answers: 0 Comments: 0
Question Number 62395 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{Most}\:\mathrm{Beautiful}\:\mathrm{Equation} \\ $$$$\mathrm{for}\:\mathrm{me}\:\mathrm{is}: \\ $$$$\mathrm{e}^{{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{INCREDIBLE}! \\ $$$$#\mathrm{Euler}'\mathrm{sIdentity} \\ $$
Question Number 62389 Answers: 1 Comments: 1
$$\int\mathrm{0dx}= \\ $$$$ \\ $$$$ \\ $$$$\mathrm{help} \\ $$
Question Number 62388 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{tan}\:\phi=\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\theta\:+\:\phi\:\:\:\mathrm{is} \\ $$
Question Number 62380 Answers: 1 Comments: 0
$${Prove}\:{that}\:{if}\:{the}\:{lengths}\:{of}\:{a}\: \\ $$$${triangle}\:{form}\:{an}\:{arithmetic} \\ $$$${progression},\:{then}\:{the}\:{centre}\:{of} \\ $$$${incircle}\:{and}\:{the}\:{centroid}\:{of} \\ $$$${triangle}\:{lie}\:{on}\:{a}\:{line}\:{parallel}\:{to} \\ $$$${the}\:{side}\:{of}\:{middle}\:{length}\:{of}\:{the} \\ $$$${triangle}. \\ $$
Question Number 62372 Answers: 1 Comments: 0
$${Solve}\:{for}\:{x}\:,\:{y} \\ $$$$\mathrm{3}{x}>\mathrm{2}{y}\:\wedge\:\mathrm{2}{x}<\mathrm{3}{y}\: \\ $$$${where}\:{x},{y}\in\mathbb{N} \\ $$
Question Number 62363 Answers: 2 Comments: 0
Question Number 62347 Answers: 2 Comments: 0
Question Number 62343 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{{x}\prod_{{k}=\mathrm{1}} ^{\infty} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right\}{dx} \\ $$
Question Number 62342 Answers: 1 Comments: 4
$${let}\:{f}\left(\xi\right)\:=\int\:\:\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}−\xi{x}^{\mathrm{2}} }}{dx}\:\:\:{with}\:\:\mathrm{0}<\xi<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\xi\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{\xi\rightarrow\mathrm{1}} \:\:\:{f}\left(\xi\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \theta\:{x}^{\mathrm{2}} }}\:{dx}\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$
Question Number 62341 Answers: 2 Comments: 3
$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{root}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\mathrm{x}^{\mathrm{8}} \:−\:\mathrm{x}^{\mathrm{7}} \:+\:\mathrm{2x}^{\mathrm{6}} \:−\:\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\frac{\mathrm{5}}{\mathrm{2}}\:\:=\:\:\mathrm{0}\:\:\:\:\:\:\:\mathrm{has} \\ $$
Question Number 62340 Answers: 0 Comments: 3
Question Number 62338 Answers: 0 Comments: 0
Question Number 62335 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{xt}} {cos}\left({yt}\right)}{\sqrt{{t}}}\:{dt}\:{and}\:{g}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{xt}} {sin}\left({yt}\right)}{\sqrt{{t}}}\:{dt} \\ $$$${with}\:{x}>\mathrm{0}\:\:{and}\:{y}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{t}} \:{cos}\left({t}\right)}{\sqrt{{t}}}\:{dt}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} {cos}\left(\mathrm{2}{t}\right)}{\sqrt{{t}}}\:{dt} \\ $$
Question Number 62334 Answers: 2 Comments: 0
$${if}\:\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta\:{evaluate}\left(\alpha−\beta\right) \\ $$
Question Number 62332 Answers: 1 Comments: 0
Question Number 62330 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}\:\:\:{with}\:\:\:\mathrm{0}<{a}<\mathrm{1} \\ $$
Question Number 62322 Answers: 0 Comments: 2
Question Number 62308 Answers: 1 Comments: 2
Question Number 62291 Answers: 1 Comments: 1
Pg 1481 Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490
Terms of Service
Privacy Policy
Contact: info@tinkutara.com