Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1486
Question Number 62086 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}} \:\mathrm{in} \\ $$$$\left(\mathrm{1}+{x}\right)^{{p}} +\left(\mathrm{1}+{x}\right)^{{p}+\mathrm{1}} +...+\left(\mathrm{1}+{x}\right)^{{n}} ,\:{p}\leqslant\:{m}\leqslant\:{n} \\ $$$$\mathrm{is}\: \\ $$
Question Number 62081 Answers: 0 Comments: 0
Question Number 62077 Answers: 1 Comments: 0
$$\underset{\:\:\mathrm{1}} {\overset{\:\:\:\:\:\:\:\:\:\:\:\:\infty} {\int}}\:\left(\frac{\mathrm{ln}\:{x}}{{x}}\right)^{\mathrm{2018}} \:{dx}\:\:=\:\:? \\ $$$${Any}\:\:{trick}\left({s}\right)\:\:{to}\:\:{solve}\:\:{it}\:? \\ $$
Question Number 62067 Answers: 2 Comments: 3
$$\underset{{x}\:\rightarrow\:−\mathrm{1}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{1}}{\left({x}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:\:=\:\:? \\ $$
Question Number 62057 Answers: 1 Comments: 2
$$\mathrm{2}^{−\mathrm{2}} \\ $$
Question Number 62056 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:=\int{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx}\:{and}\:{J}\:=\:\int{ln}\left(\mathrm{1}−{ix}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\:=\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:. \\ $$
Question Number 62055 Answers: 0 Comments: 0
$$\$\mathrm{8}+\$\mathrm{3} \\ $$
Question Number 62054 Answers: 0 Comments: 1
$$\mathrm{484}×\mathrm{27} \\ $$
Question Number 62053 Answers: 0 Comments: 1
$$\mathrm{m5}=\mathrm{25} \\ $$
Question Number 62052 Answers: 0 Comments: 1
$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$
Question Number 62051 Answers: 0 Comments: 1
$$\frac{\mathrm{7}^{\mathrm{5}} }{\mathrm{7}^{\mathrm{3}} } \\ $$
Question Number 62050 Answers: 0 Comments: 1
$$\left[\mathrm{3}×\mathrm{5}+\mathrm{3}\right]+\left[\mathrm{3}+\left(\mathrm{3}×\mathrm{2}\right)\right] \\ $$
Question Number 62049 Answers: 0 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Question Number 62048 Answers: 0 Comments: 1
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$
Question Number 62047 Answers: 0 Comments: 1
$$\left(\mathrm{4y}\right)^{\mathrm{2}} \\ $$
Question Number 62045 Answers: 1 Comments: 0
$$\mathrm{help} \\ $$$$ \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{4} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$
Question Number 62041 Answers: 0 Comments: 2
Question Number 62037 Answers: 1 Comments: 0
$$\mathrm{3}{no}_{\mathrm{2}} +{h}_{\mathrm{2}} {o}\Rightarrow\mathrm{2}{hno}_{\mathrm{3}} +{no} \\ $$$$ \\ $$
Question Number 62036 Answers: 0 Comments: 3
$$\mathrm{Correct}\:\mathrm{me}\:\mathrm{if}\:\mathrm{I}\:\mathrm{am}\:\mathrm{wrong}. \\ $$$$\underset{\sqrt{−\mathrm{1}}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\mathrm{x}_{\sqrt{−\mathrm{1}}} +\mathrm{y}_{\sqrt{−\mathrm{1}}} \\ $$$$\therefore\left({i}=\sqrt{−\mathrm{1}}\right) \\ $$$$ \\ $$
Question Number 62035 Answers: 0 Comments: 0
$${study}\:{the}\:{sequence}\:\:{U}_{{n}+\mathrm{1}} =\sqrt{{U}_{{n}} \:+\frac{\mathrm{1}}{{n}+\mathrm{1}}}\:\:{with}\:\:{U}_{\mathrm{0}} =\mathrm{1}\:. \\ $$
Question Number 62034 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{e}^{−{x}} −{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}}\:{dx} \\ $$
Question Number 62024 Answers: 0 Comments: 0
Question Number 62023 Answers: 3 Comments: 3
Question Number 62022 Answers: 1 Comments: 0
Question Number 62019 Answers: 0 Comments: 1
Question Number 62016 Answers: 0 Comments: 1
$${the}\:\mathrm{2}\:{and}\:\mathrm{3}\:{term}\:{of}\:{GP}\:\:{is}\:\mathrm{24} \\ $$$${and}\:\mathrm{12}\left({x}+\mathrm{1}\right).{If}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$${first}\:\mathrm{3}\:{terms}\:{is}\:\mathrm{76}.{Find}\:{the}\:{value} \\ $$$${of}\:{x} \\ $$
Pg 1481 Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489 Pg 1490
Terms of Service
Privacy Policy
Contact: info@tinkutara.com