Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1486

Question Number 62086    Answers: 1   Comments: 0

The coefficient of x^m in (1+x)^p +(1+x)^(p+1) +...+(1+x)^n , p≤ m≤ n is

$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}} \:\mathrm{in} \\ $$$$\left(\mathrm{1}+{x}\right)^{{p}} +\left(\mathrm{1}+{x}\right)^{{p}+\mathrm{1}} +...+\left(\mathrm{1}+{x}\right)^{{n}} ,\:{p}\leqslant\:{m}\leqslant\:{n} \\ $$$$\mathrm{is}\: \\ $$

Question Number 62081    Answers: 0   Comments: 0

Question Number 62077    Answers: 1   Comments: 0

∫_( 1) ^( ∞) (((ln x)/x))^(2018) dx = ? Any trick(s) to solve it ?

$$\underset{\:\:\mathrm{1}} {\overset{\:\:\:\:\:\:\:\:\:\:\:\:\infty} {\int}}\:\left(\frac{\mathrm{ln}\:{x}}{{x}}\right)^{\mathrm{2018}} \:{dx}\:\:=\:\:? \\ $$$${Any}\:\:{trick}\left({s}\right)\:\:{to}\:\:{solve}\:\:{it}\:? \\ $$

Question Number 62067    Answers: 2   Comments: 3

lim_(x → −1) ((x^3 + 2x^2 − 1)/((x + 1)^2 )) = ?

$$\underset{{x}\:\rightarrow\:−\mathrm{1}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{1}}{\left({x}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:\:=\:\:? \\ $$

Question Number 62057    Answers: 1   Comments: 2

2^(−2)

$$\mathrm{2}^{−\mathrm{2}} \\ $$

Question Number 62056    Answers: 0   Comments: 0

1) calculate I =∫ln(1+ix^2 )dx and J = ∫ln(1−ix^2 )dx 2) calculate A =∫ ln(1+x^4 )dx .

$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:=\int{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx}\:{and}\:{J}\:=\:\int{ln}\left(\mathrm{1}−{ix}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\:=\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:. \\ $$

Question Number 62055    Answers: 0   Comments: 0

$8+$3

$$\$\mathrm{8}+\$\mathrm{3} \\ $$

Question Number 62054    Answers: 0   Comments: 1

484×27

$$\mathrm{484}×\mathrm{27} \\ $$

Question Number 62053    Answers: 0   Comments: 1

m5=25

$$\mathrm{m5}=\mathrm{25} \\ $$

Question Number 62052    Answers: 0   Comments: 1

3(1/4)−(3/4)

$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Question Number 62051    Answers: 0   Comments: 1

(7^5 /7^3 )

$$\frac{\mathrm{7}^{\mathrm{5}} }{\mathrm{7}^{\mathrm{3}} } \\ $$

Question Number 62050    Answers: 0   Comments: 1

[3×5+3]+[3+(3×2)]

$$\left[\mathrm{3}×\mathrm{5}+\mathrm{3}\right]+\left[\mathrm{3}+\left(\mathrm{3}×\mathrm{2}\right)\right] \\ $$

Question Number 62049    Answers: 0   Comments: 1

(1/4)+(1/5)

$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Question Number 62048    Answers: 0   Comments: 1

((1/2))^3

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$

Question Number 62047    Answers: 0   Comments: 1

(4y)^2

$$\left(\mathrm{4y}\right)^{\mathrm{2}} \\ $$

Question Number 62045    Answers: 1   Comments: 0

help (x+1)^(1/2) +(x^2 −1)^(1/3) =4 find x

$$\mathrm{help} \\ $$$$ \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{4} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 62041    Answers: 0   Comments: 2

Question Number 62037    Answers: 1   Comments: 0

3no_2 +h_2 o⇒2hno_3 +no

$$\mathrm{3}{no}_{\mathrm{2}} +{h}_{\mathrm{2}} {o}\Rightarrow\mathrm{2}{hno}_{\mathrm{3}} +{no} \\ $$$$ \\ $$

Question Number 62036    Answers: 0   Comments: 3

Correct me if I am wrong. Σ_((√(−1))=1) ^3 x_(√(−1)) +y_(√(−1)) ∴(i=(√(−1)))

$$\mathrm{Correct}\:\mathrm{me}\:\mathrm{if}\:\mathrm{I}\:\mathrm{am}\:\mathrm{wrong}. \\ $$$$\underset{\sqrt{−\mathrm{1}}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\mathrm{x}_{\sqrt{−\mathrm{1}}} +\mathrm{y}_{\sqrt{−\mathrm{1}}} \\ $$$$\therefore\left({i}=\sqrt{−\mathrm{1}}\right) \\ $$$$ \\ $$

Question Number 62035    Answers: 0   Comments: 0

study the sequence U_(n+1) =(√(U_n +(1/(n+1)))) with U_0 =1 .

$${study}\:{the}\:{sequence}\:\:{U}_{{n}+\mathrm{1}} =\sqrt{{U}_{{n}} \:+\frac{\mathrm{1}}{{n}+\mathrm{1}}}\:\:{with}\:\:{U}_{\mathrm{0}} =\mathrm{1}\:. \\ $$

Question Number 62034    Answers: 0   Comments: 0

calculate ∫_0 ^1 (x^3 /(2e^(−x) −x^2 +2x−2)) dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{e}^{−{x}} −{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}}\:{dx} \\ $$

Question Number 62024    Answers: 0   Comments: 0

Question Number 62023    Answers: 3   Comments: 3

Question Number 62022    Answers: 1   Comments: 0

Question Number 62019    Answers: 0   Comments: 1

Question Number 62016    Answers: 0   Comments: 1

the 2 and 3 term of GP is 24 and 12(x+1).If the sum of the first 3 terms is 76.Find the value of x

$${the}\:\mathrm{2}\:{and}\:\mathrm{3}\:{term}\:{of}\:{GP}\:\:{is}\:\mathrm{24} \\ $$$${and}\:\mathrm{12}\left({x}+\mathrm{1}\right).{If}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$${first}\:\mathrm{3}\:{terms}\:{is}\:\mathrm{76}.{Find}\:{the}\:{value} \\ $$$${of}\:{x} \\ $$

  Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com