Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1486

Question Number 61915    Answers: 1   Comments: 0

1+iw+(iw)^2 +(iw)^3 +.........(iw)^(989) =? ans= (2/(1−iw)) answer is correct. pls help .. how to do this? TIA

$$\mathrm{1}+{iw}+\left({iw}\right)^{\mathrm{2}} +\left({iw}\right)^{\mathrm{3}} +.........\left({iw}\right)^{\mathrm{989}} =? \\ $$$$ \\ $$$${ans}=\:\:\:\:\frac{\mathrm{2}}{\mathrm{1}−{iw}}\:\:\:\:\:\:{answer}\:{is}\:{correct}. \\ $$$${pls}\:{help}\:..\:{how}\:{to}\:{do}\:{this}? \\ $$$${TIA} \\ $$

Question Number 61912    Answers: 0   Comments: 1

Question Number 61907    Answers: 1   Comments: 1

Question Number 61986    Answers: 1   Comments: 0

Find the area bounded by y(x+2)=x^4 , x=0,y=0 and x=3

$${Find}\:{the}\:{area}\:{bounded}\:{by}\:{y}\left({x}+\mathrm{2}\right)={x}^{\mathrm{4}} , \\ $$$${x}=\mathrm{0},{y}=\mathrm{0}\:{and}\:{x}=\mathrm{3} \\ $$

Question Number 61902    Answers: 0   Comments: 3

Question Number 61895    Answers: 0   Comments: 3

let A = (((1 −1)),((0 1)) ) 1) calculate A^n 2) find e^A ,e^(−A) 3) determine e^(iA) then cosA and sinA .

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:\:,{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{iA}} \:\:\:{then}\:\:{cosA}\:\:{and}\:{sinA}\:. \\ $$

Question Number 61892    Answers: 0   Comments: 1

(1/4) of (2/5)

$$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{of}\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$

Question Number 61886    Answers: 1   Comments: 0

a+bi=((2+i)/(1−i)) find 2(a^2 +b^2 )

$${a}+{bi}=\frac{\mathrm{2}+{i}}{\mathrm{1}−{i}} \\ $$$${find}\: \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$

Question Number 61885    Answers: 0   Comments: 0

let I =∫_(−∞) ^(+∞) (dx/((x+i)^n )) and J =∫_(−∞) ^(+∞) (dx/((x−i)^n )) 1) calculate I and J interms of n 2) find thevalue of integral A_n =∫_(−∞) ^(+∞) (( cos(narctan((1/x))))/((1+x^2 )^(n/2) ))dx

$${let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}+{i}\right)^{{n}} }\:\:{and}\:{J}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}−{i}\right)^{{n}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:{and}\:{J}\:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{thevalue}\:{of}\:{integral} \\ $$$${A}_{{n}} \:\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{\:{cos}\left({narctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} }{dx}\:\:\:\: \\ $$$$ \\ $$

Question Number 61884    Answers: 0   Comments: 3

let f_n (a) =∫_(−∞) ^(+∞) ((cos(nx))/((x^2 +x +a)^2 ))dx with a≥1 1) find a explicit form of f_n (a) 2)study the convervenge of Σ f_n (a) 3) determine also g_n (a) = ∫_(−∞) ^(+∞) ((cos(nx))/((x^2 +x+a)^3 ))dx study the convergence of Σ gn(a)

$${let}\:{f}_{{n}} \left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} +{x}\:\:+{a}\right)^{\mathrm{2}} }{dx}\:\:\:\:{with}\:\:\:{a}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}_{{n}} \left({a}\right) \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convervenge}\:{of}\:\Sigma\:{f}_{{n}} \left({a}\right) \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{also}\:{g}_{{n}} \left({a}\right)\:=\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} \:+{x}+{a}\right)^{\mathrm{3}} }{dx} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{gn}\left({a}\right) \\ $$

Question Number 61874    Answers: 0   Comments: 1

∫((xln(x)−x)/(ln^3 (x))) dx

$$\int\frac{{xln}\left({x}\right)−{x}}{{ln}^{\mathrm{3}} \left({x}\right)}\:{dx} \\ $$

Question Number 61873    Answers: 1   Comments: 2

((30x^8 y^(12) ))^(1/3) /^4 (√(6x^2 y^9 z)) simplifh this question

$$\sqrt[{\mathrm{3}}]{\mathrm{30x}^{\mathrm{8}} \mathrm{y}^{\mathrm{12}} }/^{\mathrm{4}} \sqrt{\mathrm{6x}^{\mathrm{2}} \mathrm{y}^{\mathrm{9}} \mathrm{z}}\:\:\:\:\mathrm{simplifh}\:\mathrm{this}\:\mathrm{question} \\ $$

Question Number 61867    Answers: 0   Comments: 0

a player kicked a football at angel 30 with the ground towards an empty goal post of hegith 3.4m the ball hits the crossbar of the goal post 30m away from where the ball was kicked. Take g=9.8m/s. Find the intial velocity u of the ball?.What is time taken for the ball to hit the crossbar?

$$\:{a}\:{player}\:{kicked}\:{a}\:{football}\:{at}\:{angel}\:\mathrm{30}\:{with}\:{the}\:{ground}\:{towards}\:{an}\:{empty}\:{goal}\:{post}\:{of}\:{hegith}\:\mathrm{3}.\mathrm{4}{m}\:{the}\:{ball}\:{hits}\:{the}\:{crossbar}\:{of}\:{the}\:{goal}\:{post}\:\mathrm{30}{m}\:{away}\:{from}\:{where}\:{the}\:{ball}\:{was}\:{kicked}.\:{Take}\:{g}=\mathrm{9}.\mathrm{8}{m}/{s}.\:{Find}\:{the}\:{intial}\:{velocity}\:{u}\:{of}\:{the}\:{ball}?.{What}\:{is}\:{time}\:{taken}\:{for}\:{the}\:{ball}\:{to}\:{hit}\:{the}\:{crossbar}? \\ $$

Question Number 61864    Answers: 1   Comments: 3

Question Number 61861    Answers: 3   Comments: 5

Question Number 61860    Answers: 0   Comments: 0

simplify: ^(n + 1) C_r − ^(n − 1) C_r

$$\mathrm{simplify}:\:\:\:\:\overset{\mathrm{n}\:+\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{r}} \:−\:\overset{\mathrm{n}\:−\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{r}} \\ $$

Question Number 61856    Answers: 0   Comments: 1

Question Number 61850    Answers: 1   Comments: 8

Find all integer solution(s): 615+x^2 =2^y

$${Find}\:{all}\:{integer}\:{solution}\left({s}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{y}}} \\ $$

Question Number 61843    Answers: 0   Comments: 3

let V be a vector space and let H and K be subspace of V. show that , H+K={x:x=h+k, where h∈H and k∈K} is a subspace of V.

$$\boldsymbol{{let}}\:\boldsymbol{{V}}\:\:\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{vector}}\:\boldsymbol{{space}}\:\boldsymbol{{and}}\:\boldsymbol{{let}}\:\boldsymbol{{H}}\:\boldsymbol{{and}}\:\boldsymbol{{K}}\:\boldsymbol{{be}}\: \\ $$$$\boldsymbol{{subspace}}\:\boldsymbol{{of}}\:\boldsymbol{{V}}.\:\boldsymbol{{show}}\:\boldsymbol{{that}}\:, \\ $$$${H}+{K}=\left\{\boldsymbol{{x}}:\boldsymbol{{x}}=\boldsymbol{{h}}+\boldsymbol{{k}},\:\boldsymbol{{where}}\:\boldsymbol{{h}}\in{H}\:\boldsymbol{{and}}\:\:\boldsymbol{{k}}\in{K}\right\}\:\boldsymbol{{is}}\:\:\boldsymbol{{a}}\:\boldsymbol{{subspace}}\:\boldsymbol{{of}}\:\boldsymbol{{V}}.\: \\ $$

Question Number 61842    Answers: 0   Comments: 1

consider the space Pn with H={f:f⊂Pn and ∫_0 ^1 f(x)∂x=0} . Show that H is a SUBSPACE of Pn.

$$\boldsymbol{{consider}}\:\boldsymbol{{the}}\:\boldsymbol{{space}}\:\boldsymbol{{P}}{n}\:\boldsymbol{{with}}\:\boldsymbol{{H}}=\left\{{f}:{f}\subset{Pn}\:\boldsymbol{{and}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right)\partial{x}=\mathrm{0}\right\}\:.\:{S}\boldsymbol{{how}}\:\boldsymbol{{that}}\:\boldsymbol{{H}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{S}}{UBSPACE}\:{of}\:{Pn}. \\ $$

Question Number 61840    Answers: 1   Comments: 0

consider the triple of real numbers (x,y,z) defined by the addittion (x,y,z)+(x′,y′,z′)=(x+x′,y+y′,z+z′) and scalar multiplication by 𝛂(x,y,z)=(0,0,0). Show that all axioms for a vector space are satisfied except axiom 8.

$$\boldsymbol{{consider}}\:\boldsymbol{{the}}\:\boldsymbol{{triple}}\:\boldsymbol{{of}}\:\boldsymbol{{real}}\:\boldsymbol{{numbers}}\:\left(\boldsymbol{{x}},{y},{z}\right) \\ $$$${defined}\:{by}\:{the}\:{addittion}\:\left(\boldsymbol{{x}},{y},{z}\right)+\left({x}',{y}',{z}'\right)=\left({x}+{x}',{y}+{y}',{z}+{z}'\right) \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{scalar}}\:\boldsymbol{{multiplication}}\:\boldsymbol{{by}}\:\:\:\boldsymbol{\alpha}\left({x},{y},{z}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{0}\right).\: \\ $$$$\boldsymbol{{S}}{how}\:{that}\:{all}\:{axioms}\:{for}\:{a}\:{vector}\:{space}\:{are}\:{satisfied}\:{except}\:{axiom}\:\mathrm{8}. \\ $$

Question Number 61855    Answers: 1   Comments: 0

∫_(0 ) ^1 ((3x^3 −x^2 +2x−4)/(√(x^2 −3x+2))) dx

$$\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}}\:{dx} \\ $$

Question Number 61835    Answers: 0   Comments: 1

If α = Cis(2π/7) and f(x) = A_0 + Σ_(n=1) ^(14) A_n x^n Then prove that Σ_(α=0) ^6 f(α^n x)= 7(A_0 +A_7 x^7 +A_(14) x^(14) ) where Cisθ = Cosθ + iSinθ

$$\mathrm{If}\:\alpha\:=\:\mathrm{Cis}\left(\mathrm{2}\pi/\mathrm{7}\right)\:\mathrm{and}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{A}_{\mathrm{0}} \:+\:\sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{14}} \mathrm{A}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \: \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}\:\sum_{\alpha=\mathrm{0}} ^{\mathrm{6}} \mathrm{f}\left(\alpha^{\mathrm{n}} \mathrm{x}\right)=\:\mathrm{7}\left(\mathrm{A}_{\mathrm{0}} +\mathrm{A}_{\mathrm{7}} \mathrm{x}^{\mathrm{7}} +\mathrm{A}_{\mathrm{14}} \mathrm{x}^{\mathrm{14}} \right) \\ $$$$\mathrm{where}\:\mathrm{Cis}\theta\:=\:\mathrm{Cos}\theta\:+\:\mathrm{iSin}\theta \\ $$

Question Number 61834    Answers: 0   Comments: 3

Question Number 61825    Answers: 1   Comments: 0

Question Number 61823    Answers: 1   Comments: 0

If D,E and F are midpoints of the sides BC,CA and AB respectively of the △ABC and O be any point.Prove that OA^→ + OB^→ +OC^→ =OD^→ +OE^→ +OF^→

$${If}\:{D},{E}\:{and}\:{F}\:{are}\:{midpoints}\:{of}\:{the}\:{sides} \\ $$$${BC},{CA}\:{and}\:{AB}\:{respectively}\:{of}\:{the}\:\bigtriangleup{ABC} \\ $$$${and}\:{O}\:{be}\:{any}\:{point}.{Prove}\:{that} \\ $$$${O}\overset{\rightarrow} {{A}}\:+\:{O}\overset{\rightarrow} {{B}}\:+{O}\overset{\rightarrow} {{C}}={O}\overset{\rightarrow} {{D}}+{O}\overset{\rightarrow} {{E}}+{O}\overset{\rightarrow} {{F}} \\ $$

  Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com