Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1486

Question Number 62538    Answers: 0   Comments: 0

Question Number 62587    Answers: 1   Comments: 1

three forces having equal magnitude s of 10N,20N and 30N make angles of 30°,120° and 210° respectively with the positive direction of the x axis. By scale drawing find the magnitude and the direction of the resultant force

$${three}\:{forces}\:{having}\:{equal}\:{magnitude} \\ $$$${s}\:{of}\:\mathrm{10}{N},\mathrm{20}{N}\:{and}\:\mathrm{30}{N}\:{make}\:{angles}\: \\ $$$${of}\:\mathrm{30}°,\mathrm{120}°\:{and}\:\mathrm{210}°\:{respectively}\:{with} \\ $$$${the}\:{positive}\:{direction}\:{of}\:{the}\:{x}\:{axis}. \\ $$$${By}\:{scale}\:{drawing}\:{find}\:{the}\:{magnitude} \\ $$$${and}\:{the}\:{direction}\:{of}\:{the}\:{resultant}\: \\ $$$${force} \\ $$

Question Number 62534    Answers: 1   Comments: 0

Question Number 62519    Answers: 1   Comments: 0

Question Number 62523    Answers: 1   Comments: 0

Question Number 62517    Answers: 4   Comments: 2

Question Number 62494    Answers: 0   Comments: 0

Question Number 62489    Answers: 3   Comments: 0

solve for x: (((√(2 − x)) + (√(2 + x)))/((√(2 − x)) − (√(2 + x)))) = 3

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:+\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:−\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}\:\:=\:\:\mathrm{3} \\ $$

Question Number 62486    Answers: 2   Comments: 1

Question Number 62468    Answers: 1   Comments: 1

Question Number 62462    Answers: 1   Comments: 0

Question Number 62609    Answers: 1   Comments: 0

If 5∣x∣ + 4∣y∣ = 4 and 2∣x∣ − 4∣y∣ = 10, then find x and y.

$$\mathrm{If}\:\:\mathrm{5}\mid{x}\mid\:+\:\mathrm{4}\mid{y}\mid\:=\:\mathrm{4}\:\mathrm{and}\:\mathrm{2}\mid{x}\mid\:−\:\mathrm{4}\mid{y}\mid\:=\:\mathrm{10}, \\ $$$$\mathrm{then}\:\mathrm{find}\:{x}\:\mathrm{and}\:{y}. \\ $$

Question Number 62456    Answers: 1   Comments: 1

Question Number 62455    Answers: 0   Comments: 3

Question Number 62611    Answers: 0   Comments: 2

If α and β are the roots of x^2 −(a+1)x+(1/2)(a^2 +a+1)=0 then α^2 +β^2 =_____.

$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{a}+\mathrm{1}\right)=\mathrm{0}\:\mathrm{then} \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\_\_\_\_\_. \\ $$

Question Number 62610    Answers: 2   Comments: 2

Find the value of x in (1/(x−1)) + (1/(x−2)) = (3/(x−3)) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{in} \\ $$$$\frac{\mathrm{1}}{{x}−\mathrm{1}}\:+\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:=\:\frac{\mathrm{3}}{{x}−\mathrm{3}}\:\:. \\ $$

Question Number 62453    Answers: 0   Comments: 3

∫ (x/(e^x − 1))dx, for x > 0

$$\int\:\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{for}\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$

Question Number 62452    Answers: 1   Comments: 0

Find the remainder when 2014! is divisible by 2017

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\:\:\mathrm{2014}!\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\mathrm{2017} \\ $$

Question Number 62449    Answers: 2   Comments: 1

Find the number of digit in 2^(50)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{digit}\:\mathrm{in}\:\:\:\:\mathrm{2}^{\mathrm{50}} \\ $$

Question Number 62448    Answers: 1   Comments: 1

Question Number 62440    Answers: 0   Comments: 2

let h(x)= arctan(x+(1/x)) 1)calculate h^((n)) (x) and h^((n)) (1) 2)developp f(x)at integr serie at x_0 =1

$${let}\:{h}\left({x}\right)=\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{h}^{\left({n}\right)} \left({x}\right)\:{and}\:{h}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\left({x}\right){at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\mathrm{1} \\ $$

Question Number 62439    Answers: 0   Comments: 1

sove inside Z/3Z the systeme { ((5x+7y =10)),((2x+5y =8)) :}

$${sove}\:{inside}\:{Z}/\mathrm{3}{Z}\:{the}\:{systeme} \\ $$$$\begin{cases}{\mathrm{5}{x}+\mathrm{7}{y}\:=\mathrm{10}}\\{\mathrm{2}{x}+\mathrm{5}{y}\:=\mathrm{8}}\end{cases} \\ $$$$ \\ $$

Question Number 62438    Answers: 0   Comments: 1

splve x^2 y^(′′) −(x+1)y′ =(x+1)e^(−x)

$${splve}\:{x}^{\mathrm{2}} {y}^{''} \:−\left({x}+\mathrm{1}\right){y}'\:\:\:=\left({x}+\mathrm{1}\right){e}^{−{x}} \\ $$$$ \\ $$$$ \\ $$

Question Number 62437    Answers: 0   Comments: 1

let f(x) =∫_0 ^1 ((arctan(1+xt))/(t^2 +1))dt determine a explicit form for f(x) 2)calculate ∫_0 ^1 ((arctan(1+2t))/(1+t^2 ))dt

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\mathrm{1}+{xt}\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$${determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\mathrm{1}+\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$ \\ $$

Question Number 62435    Answers: 0   Comments: 2

calculate lim_(x→0) (((1+x)^(sinx) −1)/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Question Number 62434    Answers: 0   Comments: 0

let f(x)=ch(cosx) 1)calculste f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie

$${let}\:{f}\left({x}\right)={ch}\left({cosx}\right) \\ $$$$\left.\mathrm{1}\right){calculste}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

  Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489      Pg 1490   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com