Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1485

Question Number 52072    Answers: 0   Comments: 0

Question Number 52061    Answers: 2   Comments: 3

Question Number 52059    Answers: 0   Comments: 1

Question Number 52058    Answers: 1   Comments: 0

Question Number 52052    Answers: 0   Comments: 1

Question Number 52038    Answers: 1   Comments: 0

(6x+8)+3=(8x−5)−6 sir plz help me

$$\left(\mathrm{6x}+\mathrm{8}\right)+\mathrm{3}=\left(\mathrm{8x}−\mathrm{5}\right)−\mathrm{6}\:\:\: \\ $$$$\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 52034    Answers: 1   Comments: 1

Question Number 52043    Answers: 1   Comments: 1

Question Number 52031    Answers: 2   Comments: 1

Question Number 52030    Answers: 1   Comments: 0

given that log2=0.3010 log3=0.477 log5=0.699 find the values of log(√((0.2)))

$${given}\:{that}\:{log}\mathrm{2}=\mathrm{0}.\mathrm{3010}\:{log}\mathrm{3}=\mathrm{0}.\mathrm{477}\:{log}\mathrm{5}=\mathrm{0}.\mathrm{699} \\ $$$${find}\:{the}\:{values}\:{of}\:{log}\sqrt{\left(\mathrm{0}.\mathrm{2}\right)} \\ $$$$ \\ $$

Question Number 52449    Answers: 0   Comments: 0

let j=e^((i2π)/3) and P(x)=(1+jx)^n −(1−jx)^n with n integr natural 1) find roots of P(x) 2)factorize P(x) inside C[x] 3) calculate ∫_0 ^1 P(x)dx. 4) decompose inside C(x) the fraction F(x)=(1/(P(x)))

$${let}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {P}\left({x}\right){dx}. \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{P}\left({x}\right)} \\ $$

Question Number 52025    Answers: 4   Comments: 8

Question Number 52016    Answers: 1   Comments: 1

Question Number 52012    Answers: 0   Comments: 2

Question Number 52138    Answers: 1   Comments: 0

Question Number 52137    Answers: 0   Comments: 0

Question Number 52007    Answers: 2   Comments: 0

Solve: ((x/4))^(log_5 50x) = x^6

$$\mathrm{Solve}:\:\:\:\:\:\:\:\:\:\:\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{4}}\right)^{\boldsymbol{\mathrm{log}}_{\mathrm{5}} \mathrm{50}\boldsymbol{\mathrm{x}}} \:\:\:=\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{6}} \\ $$

Question Number 52006    Answers: 1   Comments: 1

Differentiate sin^(−1) [((ln x)/(cos x))] with respect to tan x^2

$${Differentiate}\:\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{ln}\:{x}}{\mathrm{cos}\:{x}}\right] \\ $$$${with}\:{respect}\:{to}\:\mathrm{tan}\:{x}^{\mathrm{2}} \\ $$

Question Number 51998    Answers: 0   Comments: 1

let U ={(x,y)∈R^2 / 1≤x^2 +2y^2 ≤3} calculate ∫∫_U ((x−y)/(x^2 +y^2 ))dxdxy

$${let}\:{U}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \leqslant\mathrm{3}\right\} \\ $$$${calculate}\:\int\int_{{U}} \:\:\:\:\frac{{x}−{y}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdxy} \\ $$

Question Number 51997    Answers: 1   Comments: 2

let f(x)=∫_0 ^(π/2) (dt/(1+xsint)) with x>−1 1) calculate f(o) ,f(1) and f(2) 2) give f at form of function

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{xsint}}\:\:{with}\:{x}>−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({o}\right)\:,{f}\left(\mathrm{1}\right)\:{and}\:{f}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{give}\:{f}\:{at}\:{form}\:{of}\:{function}\: \\ $$$$ \\ $$

Question Number 51996    Answers: 1   Comments: 1

calculate S_n =Σ_(k=0) ^(n−1) sin((π/(4n)) +((kπ)/(2n)))

$${calculate}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{\pi}{\mathrm{4}{n}}\:+\frac{{k}\pi}{\mathrm{2}{n}}\right)\: \\ $$$$ \\ $$

Question Number 51995    Answers: 1   Comments: 0

let f defined on [0,1] by f(0)=0 and f(x)=(1/(2[(1/(2x))]+1)) calculate ∫_0 ^1 f(x)dx

$${let}\:\:{f}\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:{by}\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}{x}}\right]+\mathrm{1}} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$

Question Number 51994    Answers: 0   Comments: 1

let D_n = {(x,y)∈R^2 /(x,y)∈[(1/n) ,n[ } 1) find the value of ∫∫_D_n e^(−x^2 −y^2 ) dxdy 2) calculate ∫_0 ^(+∞) e^(−x^2 ) dx .

$${let}\:{D}_{{n}} =\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:/\left({x},{y}\right)\in\left[\frac{\mathrm{1}}{{n}}\:,{n}\left[\:\right\}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int\int_{{D}_{{n}} } \:\:\:\:\:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$

Question Number 51993    Answers: 0   Comments: 0

find A_n (x)=∫_0 ^1 (1−t^2 )^n cos(tx)dt

$${find}\:{A}_{{n}} \left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {cos}\left({tx}\right){dt} \\ $$

Question Number 51992    Answers: 0   Comments: 0

find lim_(x→0) ∫_x ^(2x) (t/(ln(1+t^2 )))dt

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\:\frac{{t}}{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$

Question Number 51991    Answers: 0   Comments: 1

find f(a) =∫ (dx/((√(1+ax^2 ))+(√(1−ax^2 )))) with a>0

$${find}\:{f}\left({a}\right)\:=\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{ax}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$

  Pg 1480      Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488      Pg 1489   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com