Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1485
Question Number 62206 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{0}} \:\left(−\mathrm{1}\right)^{{n}} \left\{\left[\sqrt{{n}^{\mathrm{2}} +\mathrm{2}}\right]−\left[\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}}\right]\right) \\ $$
Question Number 62205 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\:\:{n}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{e}^{−{n}} \right) \\ $$
Question Number 62204 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} } \\ $$
Question Number 62203 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{2}\right]^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$
Question Number 62202 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$
Question Number 62201 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{W}} \:\:{e}^{{x}−\mathrm{2}{y}} {sin}\left({x}+\mathrm{2}{y}\right)\:{dxdy} \\ $$$${W}\:=\left\{\left({x},{y}\right)^{\mathrm{2}} /\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\leqslant{y}\leqslant\sqrt{\mathrm{5}}\right\} \\ $$
Question Number 62200 Answers: 1 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 62199 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={e}^{−\frac{\mathrm{1}}{{x}}} \:\:\:\:\:{determine}\:{f}^{\left({n}\right)} \:{by}\:{relation}\:{of}\:{recurrence}\:. \\ $$
Question Number 62198 Answers: 0 Comments: 0
$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]} \:\:\:\:\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:{dxdy}\:. \\ $$
Question Number 62197 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{sin}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$
Question Number 62196 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{e}^{−{t}^{\mathrm{2}} } \right)}{{t}^{\mathrm{2}} \:+\mathrm{3}}{dt} \\ $$
Question Number 62195 Answers: 0 Comments: 0
$${calculate}\:\:{A}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{integr}\:{natural}\left({n}\geqslant\mathrm{1}\right) \\ $$
Question Number 62192 Answers: 1 Comments: 0
Question Number 62186 Answers: 0 Comments: 0
$$\int\frac{{e}^{\mathrm{3}{x}^{\mathrm{2}} } }{\sqrt[{\mathrm{8}}]{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx} \\ $$
Question Number 62185 Answers: 1 Comments: 0
$$\int\frac{{dx}}{{sin}\mathrm{3}{x}+{sin}\mathrm{4}{x}} \\ $$
Question Number 62184 Answers: 0 Comments: 1
$$\sqrt[{\mathrm{3}}]{\mathrm{2}{x}−\mathrm{1}}\:+\:\sqrt{\mathrm{3}{x}+\mathrm{1}}\:=\:\mathrm{3}\sqrt[{\mathrm{4}}]{{x}} \\ $$
Question Number 62180 Answers: 0 Comments: 5
$$\underset{{x}\rightarrow\infty} {{lim}}\:\frac{{senx}}{{x}} \\ $$
Question Number 62179 Answers: 0 Comments: 1
$$\int_{\:\:\mathrm{0}} ^{\:\mathrm{2}\:\sqrt{\mathrm{ln}\:\mathrm{3}}} \:\int_{\:\:\frac{\mathrm{y}}{\mathrm{2}}} ^{\:\sqrt{\mathrm{ln}\:\mathrm{3}}} \:\:\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\:\mathrm{dx}\:\mathrm{dy} \\ $$
Question Number 62176 Answers: 2 Comments: 0
Question Number 62169 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{induction}\:\mathrm{that}:\:\:\left(\mathrm{1}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:+\:\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:\:\mathrm{is}\:\mathrm{even}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\mathrm{n}.\:\:\: \\ $$
Question Number 62147 Answers: 0 Comments: 0
Question Number 62146 Answers: 0 Comments: 0
$${calculate}\:\int\:\sqrt{\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{3}}}{dx}\:. \\ $$
Question Number 62145 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\pi} {ln}\left({x}^{\mathrm{2}} −\mathrm{2}{xsin}\theta\:+\mathrm{1}\right){d}\theta \\ $$
Question Number 62142 Answers: 0 Comments: 0
$$\mathrm{6}.\mathrm{38}\boldsymbol{\div}\mathrm{0}.\mathrm{2} \\ $$
Question Number 62141 Answers: 0 Comments: 1
$${let}\:{A}\:=\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{i}\right)^{\mathrm{2}} }\:\:\:\:\:\left(\:{i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{R}\:={Re}\left({A}\right)\:{and}\:{I}\:={Im}\left({A}\right) \\ $$$${find}\:\:{the}\:{value}\:{of}\:{R}\:{and}\:{I}\:. \\ $$
Question Number 62140 Answers: 1 Comments: 0
$$\mathrm{2}\boldsymbol{\div}\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Pg 1480 Pg 1481 Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488 Pg 1489
Terms of Service
Privacy Policy
Contact: info@tinkutara.com