Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1484

Question Number 60088    Answers: 1   Comments: 1

Question Number 60085    Answers: 1   Comments: 4

Question Number 60058    Answers: 1   Comments: 1

Question Number 60056    Answers: 1   Comments: 1

Question Number 60054    Answers: 1   Comments: 1

Question Number 60053    Answers: 0   Comments: 0

Question Number 60052    Answers: 0   Comments: 0

Question Number 60050    Answers: 1   Comments: 1

calculate ∫_0 ^1 (x^3 −2)(√(x^2 +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{3}} −\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$

Question Number 60045    Answers: 1   Comments: 2

Question Number 60043    Answers: 2   Comments: 0

Show that in a 30°−60°−90° triangle the altitude on the hypotaneuse divides the hypotaneuse into segments whose length has the ratio 1/3. without using trigonometry.

$${Show}\:{that}\:{in}\:{a}\:\mathrm{30}°−\mathrm{60}°−\mathrm{90}°\:{triangle}\:{the}\: \\ $$$${altitude}\:{on}\:{the}\:{hypotaneuse}\:{divides}\:{the}\: \\ $$$${hypotaneuse}\:{into}\:{segments}\:{whose}\:{length} \\ $$$${has}\:{the}\:{ratio}\:\mathrm{1}/\mathrm{3}. \\ $$$${without}\:{using}\:{trigonometry}. \\ $$

Question Number 60039    Answers: 2   Comments: 3

find all solutions for z∈C z^i =(1/2)−(1/2)i z^(1−i) =1+i

$$\mathrm{find}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$${z}^{\mathrm{i}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$${z}^{\mathrm{1}−\mathrm{i}} =\mathrm{1}+\mathrm{i} \\ $$

Question Number 60036    Answers: 1   Comments: 0

Question Number 60027    Answers: 1   Comments: 0

∫x^i dx=?

$$\int{x}^{{i}} {dx}=? \\ $$

Question Number 60025    Answers: 0   Comments: 0

Question Number 60022    Answers: 0   Comments: 0

construct M^′ z^′ =(1/2)(((z+∣z∣)/3))

$${construct}\:{M}^{'} \:{z}^{'} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{z}+\mid{z}\mid}{\mathrm{3}}\right) \\ $$

Question Number 60021    Answers: 1   Comments: 0

Question Number 60016    Answers: 1   Comments: 0

A car dealar made a profit of 22.5% by selling a car for 58000 cedis. Find correct to two decimal places the percentage profit if the car had been sold for 61,200 cedis.

$$\mathrm{A}\:\mathrm{car}\:\mathrm{dealar}\:\mathrm{made}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\mathrm{22}.\mathrm{5\%} \\ $$$$\mathrm{by}\:\mathrm{selling}\:\mathrm{a}\:\mathrm{car}\:\mathrm{for}\:\mathrm{58000}\:\mathrm{cedis}.\:\mathrm{Find}\: \\ $$$$\mathrm{correct}\:\mathrm{to}\:\mathrm{two}\:\mathrm{decimal}\:\mathrm{places}\:\mathrm{the}\: \\ $$$$\mathrm{percentage}\:\mathrm{profit}\:\mathrm{if}\:\mathrm{the}\:\mathrm{car}\:\mathrm{had}\:\mathrm{been}\: \\ $$$$\mathrm{sold}\:\mathrm{for}\:\mathrm{61},\mathrm{200}\:\mathrm{cedis}.\: \\ $$

Question Number 60015    Answers: 0   Comments: 0

Question Number 60014    Answers: 0   Comments: 0

Question Number 60013    Answers: 0   Comments: 0

Question Number 60010    Answers: 1   Comments: 1

Question Number 60007    Answers: 1   Comments: 0

df of f(x)=x^x y^y

$${df}\:{of}\:{f}\left({x}\right)={x}^{{x}} {y}^{{y}} \\ $$

Question Number 60006    Answers: 0   Comments: 4

lim_(x→0) (x^x /x)=?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{{x}^{{x}} }{{x}}=? \\ $$

Question Number 60001    Answers: 0   Comments: 0

Question Number 60000    Answers: 0   Comments: 11

A cord is drawn at random in a given circle . Whats the probability p that the cord is longer than the side of an inscribed equilateral triangle in the circle?

$${A}\:{cord}\:{is}\:{drawn}\:{at}\:{random} \\ $$$${in}\:{a}\:{given}\:{circle}\:. \\ $$$${Whats}\:{the}\:{probability}\:\boldsymbol{{p}}\:{that} \\ $$$${the}\:{cord}\:{is}\:{longer}\:{than}\:{the}\:{side} \\ $$$${of}\:{an}\:{inscribed}\:{equilateral}\: \\ $$$${triangle}\:{in}\:{the}\:{circle}? \\ $$

Question Number 59999    Answers: 0   Comments: 0

let U_n =∫_0 ^∞ (e^(−n[x^2 ]) /((x^2 +3)^2 ))dx 1) find U_n interms of n 2) calvulate lim_(n→+∞) U_n 3)study the serie Σ U_n

$${let}\:{U}_{{n}} \:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{calvulate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

  Pg 1479      Pg 1480      Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com