Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1484
Question Number 62242 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{180}\:\wedge\:\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{45} \\ $$
Question Number 62234 Answers: 1 Comments: 0
Question Number 62232 Answers: 0 Comments: 4
Question Number 62228 Answers: 0 Comments: 2
$$\begin{cases}{\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\\{\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}. \\ $$
Question Number 62227 Answers: 0 Comments: 3
$$\mathrm{1}.\int\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{2}.\int\:\:\:\frac{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}}{\boldsymbol{\mathrm{sinx}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{3}.\int\:\:\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{4}.\int\:\:\frac{\boldsymbol{\mathrm{sinx}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 62225 Answers: 0 Comments: 4
$${let}\:{j}\:={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)\:=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{P}\left({x}\right)\:{at}\:{form}\:{of}\:{arctan} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:\:{the}\:{polynome}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{P}\left({x}\right){dx} \\ $$
Question Number 62241 Answers: 1 Comments: 0
$$\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:{A}\:{B}\:{C}\:{with}\:{position}\:{vector}\: \\ $$$$\left(\mathrm{20}\hat {{i}}+\lambda\hat {{j}}\right)\:\left(\mathrm{5}\hat {{i}}−\hat {{j}}\right)\:{and}\left(\mathrm{10}\hat {{i}}−\mathrm{13}\hat {{j}}\right)\:{are} \\ $$$${collinear}\:{then}\:{the}\:{value}\:{of}\:\lambda\:{is}: \\ $$
Question Number 62220 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}{dt}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dt}\:. \\ $$
Question Number 62214 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)}{\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)}=\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right) \\ $$
Question Number 62213 Answers: 0 Comments: 1
$${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$
Question Number 62211 Answers: 0 Comments: 3
$$\frac{{x}}{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }+\mathrm{3}}{Max}=\frac{\mathrm{5}}{\mathrm{3}}? \\ $$
Question Number 62210 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{{n}} \:{arctan}\left({nx}\right) \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$
Question Number 62209 Answers: 1 Comments: 1
$${find}\:{g}\left({a}\right)\:=\int\left({x}+{a}\right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 62208 Answers: 1 Comments: 2
$${find}\:{f}\left({a}\right)\:=\int\:\:\left({x}−{a}\right)\sqrt{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$
Question Number 62207 Answers: 1 Comments: 1
$${calculate}\:\int\:\:\:\:\:\:\frac{{x}+\mathrm{3}}{\left({x}−\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:{dx} \\ $$
Question Number 62206 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{0}} \:\left(−\mathrm{1}\right)^{{n}} \left\{\left[\sqrt{{n}^{\mathrm{2}} +\mathrm{2}}\right]−\left[\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}}\right]\right) \\ $$
Question Number 62205 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\:\:{n}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{e}^{−{n}} \right) \\ $$
Question Number 62204 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} } \\ $$
Question Number 62203 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{2}\right]^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$
Question Number 62202 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$
Question Number 62201 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{W}} \:\:{e}^{{x}−\mathrm{2}{y}} {sin}\left({x}+\mathrm{2}{y}\right)\:{dxdy} \\ $$$${W}\:=\left\{\left({x},{y}\right)^{\mathrm{2}} /\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\leqslant{y}\leqslant\sqrt{\mathrm{5}}\right\} \\ $$
Question Number 62200 Answers: 1 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 62199 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={e}^{−\frac{\mathrm{1}}{{x}}} \:\:\:\:\:{determine}\:{f}^{\left({n}\right)} \:{by}\:{relation}\:{of}\:{recurrence}\:. \\ $$
Question Number 62198 Answers: 0 Comments: 0
$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]} \:\:\:\:\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:{dxdy}\:. \\ $$
Question Number 62197 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{sin}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$
Question Number 62196 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{e}^{−{t}^{\mathrm{2}} } \right)}{{t}^{\mathrm{2}} \:+\mathrm{3}}{dt} \\ $$
Pg 1479 Pg 1480 Pg 1481 Pg 1482 Pg 1483 Pg 1484 Pg 1485 Pg 1486 Pg 1487 Pg 1488
Terms of Service
Privacy Policy
Contact: info@tinkutara.com