Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1484

Question Number 62242    Answers: 2   Comments: 1

Find out x,y such that lcm(x,y)=180 ∧ gcd(x,y)=45

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{180}\:\wedge\:\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{45} \\ $$

Question Number 62234    Answers: 1   Comments: 0

Question Number 62232    Answers: 0   Comments: 4

Question Number 62228    Answers: 0   Comments: 2

{ (((√(a+x))+(√(a−y))=2a)),(((√(a−x))+(√(a+y))=2a)) :} a∈R.

$$\begin{cases}{\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\\{\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}. \\ $$

Question Number 62227    Answers: 0   Comments: 3

1.∫(√(1+x+x^2 +x^3 ))dx=? 2.∫ ((√(1−tgx))/(sinx)) dx=? 3.∫ e^x .ln(1+(√(1+x^2 )))dx=? 4.∫ ((sinx)/(1+sinx+sin2x)) dx=?

$$\mathrm{1}.\int\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{2}.\int\:\:\:\frac{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}}{\boldsymbol{\mathrm{sinx}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{3}.\int\:\:\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{4}.\int\:\:\frac{\boldsymbol{\mathrm{sinx}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 62225    Answers: 0   Comments: 4

let j =e^((i2π)/3) and P(x) =(1+jx)^n −(1−jx)^n 1) find P(x) at form of arctan 2) find the roots of P(x) 3)factorize inside C[x] the polynome P(x) 4) calculate ∫_0 ^1 P(x)dx

$${let}\:{j}\:={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)\:=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{P}\left({x}\right)\:{at}\:{form}\:{of}\:{arctan} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:\:{the}\:{polynome}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{P}\left({x}\right){dx} \\ $$

Question Number 62241    Answers: 1   Comments: 0

if the point A B C with position vector (20i^ +λj^ ) (5i^ −j^ ) and(10i^ −13j^ ) are collinear then the value of λ is:

$$\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:{A}\:{B}\:{C}\:{with}\:{position}\:{vector}\: \\ $$$$\left(\mathrm{20}\hat {{i}}+\lambda\hat {{j}}\right)\:\left(\mathrm{5}\hat {{i}}−\hat {{j}}\right)\:{and}\left(\mathrm{10}\hat {{i}}−\mathrm{13}\hat {{j}}\right)\:{are} \\ $$$${collinear}\:{then}\:{the}\:{value}\:{of}\:\lambda\:{is}: \\ $$

Question Number 62220    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (t^2 /(x^6 +t^6 )) dt with x>0 1) calculate f(x) 2) calculate g(x) =∫_0 ^∞ (t^2 /((x^6 +t^6 )^2 ))dt 3) find values of integrals ∫_0 ^∞ (t^2 /(t^6 +8))dt and ∫_0 ^∞ (t^2 /((t^6 +8)^2 ))dt .

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}{dt}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dt}\:. \\ $$

Question Number 62214    Answers: 1   Comments: 0

Find out x,y such that ((lcm(x,y))/(gcd(x,y)))=lcm(x,y)−gcd(x,y)

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)}{\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)}=\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right) \\ $$

Question Number 62213    Answers: 0   Comments: 1

calculate ∫∫∫_D e^(−x^2 −y^2 ) (√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z)∈R^3 / 0≤x≤1 , 1≤y≤2 and 2≤z≤3 }

$${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$

Question Number 62211    Answers: 0   Comments: 3

(x/((√(4−x^2 ))+3))Max=(5/3)?

$$\frac{{x}}{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }+\mathrm{3}}{Max}=\frac{\mathrm{5}}{\mathrm{3}}? \\ $$

Question Number 62210    Answers: 0   Comments: 2

let f(x) =(x+1)^n arctan(nx) calculate f^((n)) (0).

$${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{{n}} \:{arctan}\left({nx}\right) \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 62209    Answers: 1   Comments: 1

find g(a) =∫(x+a)(√(x^2 −a^2 ))dx

$${find}\:{g}\left({a}\right)\:=\int\left({x}+{a}\right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 62208    Answers: 1   Comments: 2

find f(a) =∫ (x−a)(√(x^2 +a^2 ))dx

$${find}\:{f}\left({a}\right)\:=\int\:\:\left({x}−{a}\right)\sqrt{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$

Question Number 62207    Answers: 1   Comments: 1

calculate ∫ ((x+3)/((x−2)(√(x^2 +x+1)))) dx

$${calculate}\:\int\:\:\:\:\:\:\frac{{x}+\mathrm{3}}{\left({x}−\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:{dx} \\ $$

Question Number 62206    Answers: 0   Comments: 0

study the convergence of Σ_(n≥0) (−1)^n {[(√(n^2 +2))]−[(√(n^2 +1))])

$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{0}} \:\left(−\mathrm{1}\right)^{{n}} \left\{\left[\sqrt{{n}^{\mathrm{2}} +\mathrm{2}}\right]−\left[\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}}\right]\right) \\ $$

Question Number 62205    Answers: 0   Comments: 0

study the convergence of Σ_(n≥1) n^2 arctan(1+e^(−n) )

$${study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\:\:{n}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{e}^{−{n}} \right) \\ $$

Question Number 62204    Answers: 0   Comments: 1

study the convergence of Σ_(n≥1) ((ln(1+e^(−n^2 ) ))/n^n )

$${study}\:{the}\:{convergence}\:{of}\:\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} } \\ $$

Question Number 62203    Answers: 0   Comments: 1

calculate ∫∫_([0,2]^2 ) ((arctan((√(x^2 +y^2 ))))/(3−(√(x^2 +y^2 ))))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{2}\right]^{\mathrm{2}} } \:\:\:\:\frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$

Question Number 62202    Answers: 0   Comments: 0

study the convergence of Σ_(n≥1) (((√(n+1))−(√n))/(nln(n+1)))

$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$

Question Number 62201    Answers: 0   Comments: 1

calculate ∫∫_W e^(x−2y) sin(x+2y) dxdy W ={(x,y)^2 / 0≤x≤1 and 2≤y≤(√5)}

$${calculate}\:\int\int_{{W}} \:\:{e}^{{x}−\mathrm{2}{y}} {sin}\left({x}+\mathrm{2}{y}\right)\:{dxdy} \\ $$$${W}\:=\left\{\left({x},{y}\right)^{\mathrm{2}} /\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\leqslant{y}\leqslant\sqrt{\mathrm{5}}\right\} \\ $$

Question Number 62200    Answers: 1   Comments: 1

calculate lim_(x→0) ((ln(1+x+sinx)−ln(1+sin(2x)))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 62199    Answers: 0   Comments: 0

let f(x) =e^(−(1/x)) determine f^((n)) by relation of recurrence .

$${let}\:{f}\left({x}\right)\:={e}^{−\frac{\mathrm{1}}{{x}}} \:\:\:\:\:{determine}\:{f}^{\left({n}\right)} \:{by}\:{relation}\:{of}\:{recurrence}\:. \\ $$

Question Number 62198    Answers: 0   Comments: 0

find ∫∫_([0,1]) ((x^2 −y^2 )/(3−(√(x^2 +y^2 )))) dxdy .

$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]} \:\:\:\:\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{\mathrm{3}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:{dxdy}\:. \\ $$

Question Number 62197    Answers: 0   Comments: 1

calculate ∫∫_([0,1]^2 ) (√(x^2 +y^2 ))sin((√(x^2 +y^2 )))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{sin}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$

Question Number 62196    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((ln(2+e^(−t^2 ) ))/(t^2 +3))dt

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{e}^{−{t}^{\mathrm{2}} } \right)}{{t}^{\mathrm{2}} \:+\mathrm{3}}{dt} \\ $$

  Pg 1479      Pg 1480      Pg 1481      Pg 1482      Pg 1483      Pg 1484      Pg 1485      Pg 1486      Pg 1487      Pg 1488   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com