Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1478

Question Number 63519    Answers: 0   Comments: 4

consider the general definite intergral I_n =∫_0 ^(π/2) sin^n xdx a) prove that for n≥2, nI_n =(n−1)I_(n−2) . b) Find the values of i)∫_0 ^(π/2) sin^5 dx ii) ∫_0 ^(π/2) sin^6 dx

$${consider}\:{the}\:{general}\:{definite}\:{intergral}\:\: \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {xdx} \\ $$$$\left.{a}\right)\:{prove}\:{that}\:{for}\:{n}\geqslant\mathrm{2},\:{nI}_{{n}} =\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} . \\ $$$$\left.{b}\left.\right)\left.\:{Find}\:{the}\:{values}\:{of}\:\:\boldsymbol{{i}}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{5}} {dx}\:\:\:\boldsymbol{{ii}}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} {dx} \\ $$

Question Number 63517    Answers: 1   Comments: 0

Given that ∣z−6∣=2∣z+6−9i∣, a) Use algebra to show that the locus of z is a circle, stating its center and its radius. b) sketch the locus z on an argand diagram.

$$\mathrm{Given}\:\mathrm{that}\:\:\mid{z}−\mathrm{6}\mid=\mathrm{2}\mid{z}+\mathrm{6}−\mathrm{9}{i}\mid, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Use}\:\mathrm{algebra}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}, \\ $$$$\mathrm{stating}\:\mathrm{its}\:\mathrm{center}\:\mathrm{and}\:\mathrm{its}\:\mathrm{radius}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{locus}\:{z}\:\mathrm{on}\:\mathrm{an}\:\mathrm{argand}\:\mathrm{diagram}. \\ $$

Question Number 63510    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t)) dt with x>0 and 0<a<1 1)calculate f(x) 2)calculate g(x)=∫_0 ^∞ (t^(a−1) /((x+t)^2 ))dt 3)find the value of∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}}\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$${and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 63509    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 ((√(1+x^2 )) −(√(1−x^2 )))dx

$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 63508    Answers: 0   Comments: 4

let f(x) =∫_(−∞) ^(+∞) (dt/((t^2 +ixt −1))) with ∣x∣>2 (i^2 =−1) 1) extract Re(f(x)) and Im(f(x)) 2) calculate f(x) 3) find olso g(x) =∫_(−∞) ^(+∞) (t/((t^2 +ixt −1)^2 ))dt 4) find values of integrals ∫_(−∞) ^(+∞) (dt/((t^2 +3it −1))) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 +3it −1)^2 )) 5) give f^((n)) (x) at form of integrals.

$${let}\:\:{f}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)}\:\:{with}\:\mid{x}\mid>\mathrm{2}\:\:\:\left({i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:\:{find}\:{olso}\:{g}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{t}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{3}{it}\:−\mathrm{1}\right)}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}{it}\:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right)\:{give}\:{f}^{\left({n}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integrals}. \\ $$

Question Number 63507    Answers: 1   Comments: 0

let U_n =∫_(1/n) ^1 ((√(x^2 +x+1)) −(√(x^2 −x+1)))dx (n>0) 1)calculate lim_(n→+∞) U_n 2) find nature of Σ U_n

$${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}\:\:\:\left({n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{nature}\:{of}\:\:\Sigma\:{U}_{{n}} \\ $$

Question Number 63490    Answers: 2   Comments: 1

A father with 8 children takes 3 at a time to the garden as often as he without taking the same 3 children together more than once. The number of times he will go to the garden is

$$\mathrm{A}\:\mathrm{father}\:\mathrm{with}\:\mathrm{8}\:\mathrm{children}\:\mathrm{takes}\:\mathrm{3}\:\mathrm{at}\:\mathrm{a}\: \\ $$$$\mathrm{time}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{as}\:\mathrm{often}\:\mathrm{as}\:\mathrm{he} \\ $$$$\mathrm{without}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{same}\:\mathrm{3}\:\mathrm{children} \\ $$$$\mathrm{together}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{times}\:\mathrm{he}\:\mathrm{will}\:\mathrm{go}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{is} \\ $$

Question Number 63489    Answers: 0   Comments: 0

A father with 8 children takes 3 at a time to the garden as often as he without taking the same 3 children together more than once. The number of times he will go to the garden is

$$\mathrm{A}\:\mathrm{father}\:\mathrm{with}\:\mathrm{8}\:\mathrm{children}\:\mathrm{takes}\:\mathrm{3}\:\mathrm{at}\:\mathrm{a}\: \\ $$$$\mathrm{time}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{as}\:\mathrm{often}\:\mathrm{as}\:\mathrm{he} \\ $$$$\mathrm{without}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{same}\:\mathrm{3}\:\mathrm{children} \\ $$$$\mathrm{together}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{times}\:\mathrm{he}\:\mathrm{will}\:\mathrm{go}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{is} \\ $$

Question Number 63485    Answers: 1   Comments: 0

f(x−3)+f(x)=2x−3 F(2)=0. F(−2)=?

$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{F}}\left(\mathrm{2}\right)=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{F}}\left(−\mathrm{2}\right)=? \\ $$

Question Number 63499    Answers: 1   Comments: 0

given that a∣b, show that −a∣b.

$${given}\:{that}\:\:\:{a}\mid{b},\:{show}\:{that}\:−{a}\mid{b}. \\ $$

Question Number 63481    Answers: 1   Comments: 1

Find the solution of inequality : x^2 + ∣x∣ > 6

$${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:{inequality}\:\:: \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mid{x}\mid\:>\:\mathrm{6} \\ $$

Question Number 63474    Answers: 1   Comments: 0

let P(x)=x^2 +(1/2)x+b and Q(x)=x^2 +cx+d be to polynomials with real coefficient such that P(x) Q(x)=Q(P(x)) find all the real roots of P(Q(x))=0

$${let}\:{P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+{b} \\ $$$$ \\ $$$${and}\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d} \\ $$$$ \\ $$$${be}\:{to}\:{polynomials}\:{with}\:{real}\:{coefficient}\:{such}\:{that} \\ $$$$ \\ $$$${P}\left({x}\right)\:{Q}\left({x}\right)={Q}\left({P}\left({x}\right)\right) \\ $$$$ \\ $$$${find}\:{all}\:{the}\:{real}\:{roots}\:{of}\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0} \\ $$

Question Number 63470    Answers: 0   Comments: 0

Question Number 63466    Answers: 0   Comments: 7

If A=sin^(28) θ+cos^(36) θ then Ans: 0<A≤1

$$\mathrm{If}\:\mathrm{A}=\mathrm{sin}^{\mathrm{28}} \theta+\mathrm{cos}^{\mathrm{36}} \theta\:\mathrm{then} \\ $$$$\mathrm{Ans}:\:\mathrm{0}<\mathrm{A}\leqslant\mathrm{1} \\ $$

Question Number 63460    Answers: 1   Comments: 2

factorise cosθ−cos3θ−cos5θ +cos7θ

$${factorise} \\ $$$${cos}\theta−{cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta\:+{cos}\mathrm{7}\theta \\ $$

Question Number 63473    Answers: 0   Comments: 5

question lim_(x→0) ((sin(x+A)−sin(A−x))/(2x))

$${question} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({x}+{A}\right)−{sin}\left({A}−{x}\right)}{\mathrm{2}{x}} \\ $$

Question Number 63457    Answers: 1   Comments: 1

((3/4))^x ((2/3))^y =((32)/(27)) find the value of x and yy y.

$$\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{x}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{y}} =\frac{\mathrm{32}}{\mathrm{27}}\:{find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{yy} \\ $$$${y}. \\ $$

Question Number 63449    Answers: 0   Comments: 2

Do you remember that π≈3.1415926535897932⋱ 38462643383279502884⋱ 197...

$${Do}\:{you}\:{remember}\:{that} \\ $$$$\pi\approx\mathrm{3}.\mathrm{1415926535897932}\ddots \\ $$$$\mathrm{38462643383279502884}\ddots \\ $$$$\mathrm{197}... \\ $$

Question Number 63447    Answers: 1   Comments: 2

How to calculate ⌈(n) using gamma function ∀n∈R

$${How}\:{to}\:{calculate}\:\lceil\left({n}\right)\: \\ $$$${using}\:{gamma}\:{function} \\ $$$$\forall{n}\in{R} \\ $$

Question Number 63438    Answers: 1   Comments: 2

Question Number 63433    Answers: 1   Comments: 1

∫_1 ^x x^2 −3x(√x)dx =((−716)/(15)) then calculate ∫_x ^(x+1) (1/(x+3))dx

$$\underset{\mathrm{1}} {\overset{{x}} {\int}}{x}^{\mathrm{2}} −\mathrm{3}{x}\sqrt{{x}}{dx}\:=\frac{−\mathrm{716}}{\mathrm{15}} \\ $$$${then}\:{calculate}\:\underset{{x}} {\overset{{x}+\mathrm{1}} {\int}}\frac{\mathrm{1}}{{x}+\mathrm{3}}{dx} \\ $$

Question Number 63430    Answers: 1   Comments: 0

Question Number 63428    Answers: 0   Comments: 2

It is given that S_n =Σ_(r=1) ^n (3r^(2 ) −3r−1). Use the the formulae of Σ_(r=1) ^n r^(2 ) and Σ_(r=1) ^n r to show that S_n =n^3 . sir Forkum Michael

$${It}\:{is}\:{given}\:{that}\:{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{r}^{\mathrm{2}\:} −\mathrm{3}{r}−\mathrm{1}\right).\:{Use}\:{the}\:{the}\:{formulae} \\ $$$${of}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}\:\:} {and}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\:\:{to}\:{show}\:{that}\:{S}_{{n}} ={n}^{\mathrm{3}} . \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Question Number 63427    Answers: 0   Comments: 4

(1) A plane contains the lines ((x+1)/2)=((4−y)/2)=((z−2)/3) and r= (2i+2j + 12k)+t(−i+2j +4k). find (a) the angle between these lines. (b) A cartesian equation of the plane. (2) Given the lines l_1 :((x−10)/3)=((y−1)/1)=((z−9)/4) l_2 :r=(−9j+13k)+μ(i+2j−3k) where μ is a parameter; l_3 :((x+10)/4)=((y+5)/3)=((z+4)/1). a) show that the point (4,−1,1) is common to l_1 and l_2 . Find b) the point of intersection of l_2 and l_3 . c) A vector parametric equation of the plane containing the lines l_2 and l_3 . sir Forkum Michael

$$\left(\mathrm{1}\right)\:{A}\:{plane}\:{contains}\:{the}\:{lines}\:\frac{{x}+\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{4}−{y}}{\mathrm{2}}=\frac{{z}−\mathrm{2}}{\mathrm{3}}\:{and}\: \\ $$$${r}=\:\left(\mathrm{2}{i}+\mathrm{2}{j}\:+\:\mathrm{12}{k}\right)+{t}\left(−{i}+\mathrm{2}{j}\:+\mathrm{4}{k}\right).\:{find} \\ $$$$\left({a}\right)\:{the}\:{angle}\:{between}\:{these}\:{lines}. \\ $$$$\left({b}\right)\:{A}\:{cartesian}\:{equation}\:{of}\:{the}\:{plane}. \\ $$$$\left(\mathrm{2}\right)\:{Given}\:{the}\:{lines}\:\boldsymbol{{l}}_{\mathrm{1}} :\frac{{x}−\mathrm{10}}{\mathrm{3}}=\frac{{y}−\mathrm{1}}{\mathrm{1}}=\frac{{z}−\mathrm{9}}{\mathrm{4}}\:\:\boldsymbol{{l}}_{\mathrm{2}} :{r}=\left(−\mathrm{9}{j}+\mathrm{13}{k}\right)+\mu\left({i}+\mathrm{2}{j}−\mathrm{3}{k}\right) \\ $$$${where}\:\mu\:{is}\:{a}\:{parameter};\:\boldsymbol{{l}}_{\mathrm{3}} :\frac{{x}+\mathrm{10}}{\mathrm{4}}=\frac{{y}+\mathrm{5}}{\mathrm{3}}=\frac{{z}+\mathrm{4}}{\mathrm{1}}. \\ $$$$\left.{a}\right)\:{show}\:{that}\:{the}\:{point}\:\left(\mathrm{4},−\mathrm{1},\mathrm{1}\right)\:{is}\:{common}\:{to}\:\boldsymbol{{l}}_{\mathrm{1}} \:{and}\:\boldsymbol{{l}}_{\mathrm{2}} .\:{Find} \\ $$$$\left.{b}\right)\:{the}\:{point}\:{of}\:{intersection}\:{of}\:\boldsymbol{{l}}_{\mathrm{2}} \:{and}\:\boldsymbol{{l}}_{\mathrm{3}} . \\ $$$$\left.{c}\right)\:{A}\:{vector}\:{parametric}\:{equation}\:{of}\:{the}\:{plane}\:{containing}\:{the} \\ $$$${lines}\:\boldsymbol{{l}}_{\mathrm{2}} \:{and}\:\boldsymbol{{l}}_{\mathrm{3}} . \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Question Number 63426    Answers: 1   Comments: 5

show that (a) cos[2cos^(−1) (x) +sin^(−1) (x)]= −(√(1−x^2 )) (b) ((sinα + sinβ)/(cosα−cosβ))=cot(((β−α)/2)) (c) 2cos((π/3)+p)≊ 1−(√3) if p is small enough to neglect p^2 . (d) if θ =(1/2)sin^(−1) ((3/4)), show that sinθ−cosθ = ±(1/2) (e)write tan3A in terms of tanA (f) Factorise cosθ − cos3θ−cos5θ+cos7θ (g)i) verify that f(x)=((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2tan3θ)/(1−tan^2 3θ)) ii) hence find in radians the general solution of f(x)=1 sir Forkum Michael

$${show}\:{that}\: \\ $$$$\left({a}\right)\:{cos}\left[\mathrm{2}{cos}^{−\mathrm{1}} \left({x}\right)\:+{sin}^{−\mathrm{1}} \left({x}\right)\right]=\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$$$\left({b}\right)\:\frac{{sin}\alpha\:+\:{sin}\beta}{{cos}\alpha−{cos}\beta}={cot}\left(\frac{\beta−\alpha}{\mathrm{2}}\right) \\ $$$$\left({c}\right)\:\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{3}}+{p}\right)\approxeq\:\mathrm{1}−\sqrt{\mathrm{3}}\:{if}\:{p}\:{is}\:{small}\:{enough}\:{to}\:{neglect}\:{p}^{\mathrm{2}} . \\ $$$$\left({d}\right)\:{if}\:\theta\:=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right),\:{show}\:{that}\:{sin}\theta−{cos}\theta\:=\:\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({e}\right){write}\:{tan}\mathrm{3}{A}\:{in}\:{terms}\:{of}\:{tanA} \\ $$$$\left({f}\right)\:{Factorise}\:{cos}\theta\:−\:{cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta+{cos}\mathrm{7}\theta \\ $$$$\left.\left({g}\right){i}\right)\:{verify}\:{that}\:{f}\left({x}\right)=\frac{{sin}\mathrm{2}\theta+{sin}\mathrm{10}\theta}{{cos}\mathrm{2}\theta+{cos}\mathrm{10}\theta}=\frac{\mathrm{2}{tan}\mathrm{3}\theta}{\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}\theta} \\ $$$$\left.\:\:{ii}\right)\:{hence}\:{find}\:{in}\:{radians}\:{the}\:{general}\:{solution}\:{of}\:\:{f}\left({x}\right)=\mathrm{1} \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Question Number 63425    Answers: 0   Comments: 0

The probability that a vaccinated person(V) contracts a disease is (1/(20)). For a person vaccinated(V ′) , the probability of contracting a disease is (5/6). In a certain town 90%of thepopulation has been vaccinated against a disease. A person is selected at random from the town,find the probability that: (a) he has the disease, (b) he is vaccinated or he has the disease. sir Forkum Michael

$${The}\:{probability}\:{that}\:{a}\:{vaccinated}\:{person}\left({V}\right)\:{contracts}\:{a}\:{disease} \\ $$$${is}\:\frac{\mathrm{1}}{\mathrm{20}}.\:{For}\:{a}\:{person}\:{vaccinated}\left({V}\:'\right)\:,\:{the}\:{probability}\:{of}\:{contracting} \\ $$$${a}\:{disease}\:{is}\:\frac{\mathrm{5}}{\mathrm{6}}.\:{In}\:{a}\:{certain}\:{town}\:\mathrm{90\%}{of}\:{thepopulation}\:{has} \\ $$$${been}\:{vaccinated}\:{against}\:{a}\:{disease}.\:{A}\:{person}\:{is}\:{selected}\:{at} \\ $$$${random}\:{from}\:{the}\:{town},{find}\:{the}\:{probability}\:{that}: \\ $$$$\left({a}\right)\:{he}\:{has}\:{the}\:{disease}, \\ $$$$\left({b}\right)\:{he}\:{is}\:{vaccinated}\:{or}\:{he}\:{has}\:{the}\:{disease}. \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

  Pg 1473      Pg 1474      Pg 1475      Pg 1476      Pg 1477      Pg 1478      Pg 1479      Pg 1480      Pg 1481      Pg 1482   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com