s=(√(a^2 +(a^2 −d)^2 ))+(√((b−a)^2 +(b^2 −a^2 )^2 ))
+(√(b^2 +(c−b^2 )^2 ))+c−d
p= a(a^2 −d)+(a+b)(b^2 −a^2 )
+b(c−b^2 )
Find a,b,c, or d in terms of s
if p is maximum.
Assume a,b,c,d ≥0 .
f(x,y,z)= x(p+z)+y(p−z)
+((4x^3 )/(p+z))+((4y^3 )/(p−z))+4(x+y)^2 (y−x)
∀ p(x,y)=c+(x−y)(√(1+(x+y)^2 ))
+(x^2 −y^2 )
Determine x,y,z such that f is
maximum. (c is a constant).
Assume y≥x.