Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1477
Question Number 60577 Answers: 1 Comments: 1
$$\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{3}\sqrt{\mathrm{1}\:+\:\mathrm{5}\sqrt{\mathrm{1}\:+\:\mathrm{7}\sqrt{\mathrm{1}\:+\:\mathrm{11}\sqrt{\mathrm{1}\:+\:\mathrm{13}\sqrt{\mathrm{1}\:+\:\mathrm{17}\sqrt{...}}}}}}}\:\:=\:\:{x} \\ $$$${x}\:\:=\:\:? \\ $$
Question Number 60576 Answers: 1 Comments: 4
$$\mathrm{two}\:\mathrm{faire}\:\mathrm{dices}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{together} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{total}\:\mathrm{score}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{4} \\ $$$$ \\ $$
Question Number 60545 Answers: 1 Comments: 0
Question Number 60536 Answers: 3 Comments: 0
$$\mathrm{cosx}=\mathrm{sin3x} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{with}\:\mathrm{solution}\:\: \\ $$$$\mathrm{pllllllz} \\ $$
Question Number 60534 Answers: 0 Comments: 1
Question Number 60533 Answers: 1 Comments: 2
$$\mathrm{If}\:\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{C}\:+\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\:=\:\:\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{A}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B} \\ $$
Question Number 60527 Answers: 2 Comments: 1
Question Number 60514 Answers: 1 Comments: 5
$${i}\:{found}\:{some}\:{interesting}\:{basic}\:{question} \\ $$$${hence}\:{sharing}... \\ $$$$\left.\mathrm{1}\right){if}\:{A}\in\left[\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:\:?\:\leftarrow{find}\:{interval}\: \\ $$$$\left.\mathrm{2}\right){if}\:{A}\:\in\:\left[−\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:? \\ $$$$\left.\mathrm{3}\right)\:{y}=\frac{\mathrm{1}}{{A}\:\:}\:\:{and}\:{A}\in\:\:\:\:\left[\mathrm{1},\mathrm{4}\right]\:\:{y}\in\:? \\ $$$$\left.\mathrm{4}\right){y}=\frac{\mathrm{1}}{\mid{A}\mid}\:\:{A}\in\left[−\mathrm{1},\mathrm{4}\right]\:\:\:{y}\in\:? \\ $$
Question Number 60510 Answers: 0 Comments: 3
Question Number 60508 Answers: 0 Comments: 0
$${prof}\:{Abdo}\:\:{pls}\:{restrict}\:{the}\:\:{numbers}\:{of}\:{input}\:{of}\:{question}... \\ $$$$ \\ $$
Question Number 60506 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{W}} \:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }}{{x}+{y}}\:{dxdy} \\ $$$${with}\:{W}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}.\right. \\ $$
Question Number 60504 Answers: 1 Comments: 2
$$\:{let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}^{\mathrm{2}} \:+\mathrm{2}^{\mathrm{2}} \:+...{k}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{4}} \:+\mathrm{2}^{\mathrm{4}} \:+...+{k}^{\mathrm{4}} } \\ $$$${study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$
Question Number 60503 Answers: 1 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+...+{n}^{\mathrm{3}} } \\ $$
Question Number 60502 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{2}{x}\right)\:{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 60501 Answers: 1 Comments: 1
$${let}\:{A}\:=\begin{pmatrix}{\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{e}^{{A}} \:\:\:{and}\:{e}^{−{A}} \:. \\ $$$$ \\ $$
Question Number 60500 Answers: 0 Comments: 2
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}^{−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{A}} \:\:\:{and}\:{e}^{−\mathrm{2}{A}} \:. \\ $$
Question Number 60499 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Question Number 60498 Answers: 0 Comments: 4
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{{t}\:+{x}\:+{x}^{\mathrm{2}} }{dx}\:\:{with}\:{t}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{{t}+{x}\:+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\:,\:\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{\mathrm{2}\:+{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}+{x}\:+{x}^{\mathrm{2}} }}\:\:. \\ $$
Question Number 60595 Answers: 0 Comments: 2
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{ax}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−\left({cos}\theta\right){x}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$
Question Number 60496 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 60495 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 60494 Answers: 1 Comments: 1
$${find}\:\int\:\sqrt{\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }−{x}}{dx} \\ $$
Question Number 60493 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${approximate}\:{f}\left({x}\right)\:{by}\:{a}\:{polynome} \\ $$$${at}\:{v}\left(\mathrm{0}\right) \\ $$
Question Number 60484 Answers: 1 Comments: 2
$${If}\:\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{4} \\ $$$$ \\ $$$${then}\:{find} \\ $$$${a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}\:} =\:? \\ $$
Question Number 60481 Answers: 0 Comments: 0
Question Number 60856 Answers: 0 Comments: 0
$${if}\:\:\mathrm{0}<{x}<\mathrm{1},\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\left.{x}^{{x}^{{x}^{.^{.^{.^{{x}} } } } } } \right\}{n}}{\left(\left({x}^{{x}} \right)^{{x}} \right)^{\left.{x}...\right\}{n}} }=? \\ $$$$\left(?\:{can}\:{be}\:{expressed}\:{by}\:{x}\right) \\ $$
Pg 1472 Pg 1473 Pg 1474 Pg 1475 Pg 1476 Pg 1477 Pg 1478 Pg 1479 Pg 1480 Pg 1481
Terms of Service
Privacy Policy
Contact: info@tinkutara.com