Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1477

Question Number 60577    Answers: 1   Comments: 1

2(√(1 + 3(√(1 + 5(√(1 + 7(√(1 + 11(√(1 + 13(√(1 + 17(√(...)))))))))))))) = x x = ?

$$\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{3}\sqrt{\mathrm{1}\:+\:\mathrm{5}\sqrt{\mathrm{1}\:+\:\mathrm{7}\sqrt{\mathrm{1}\:+\:\mathrm{11}\sqrt{\mathrm{1}\:+\:\mathrm{13}\sqrt{\mathrm{1}\:+\:\mathrm{17}\sqrt{...}}}}}}}\:\:=\:\:{x} \\ $$$${x}\:\:=\:\:? \\ $$

Question Number 60576    Answers: 1   Comments: 4

two faire dices are tossed together find the probability that the total score is atmost 4

$$\mathrm{two}\:\mathrm{faire}\:\mathrm{dices}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{together} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{total}\:\mathrm{score}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{4} \\ $$$$ \\ $$

Question Number 60545    Answers: 1   Comments: 0

Question Number 60536    Answers: 3   Comments: 0

cosx=sin3x find x with solution pllllllz

$$\mathrm{cosx}=\mathrm{sin3x} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{with}\:\mathrm{solution}\:\: \\ $$$$\mathrm{pllllllz} \\ $$

Question Number 60534    Answers: 0   Comments: 1

Question Number 60533    Answers: 1   Comments: 2

If A, B, C are angle of a triangle. Show that cos (1/2)C + cos (1/2)(A − B) = 2 sin (1/2)A sin (1/2)B

$$\mathrm{If}\:\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{C}\:+\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\:=\:\:\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{A}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B} \\ $$

Question Number 60527    Answers: 2   Comments: 1

Question Number 60514    Answers: 1   Comments: 5

i found some interesting basic question hence sharing... 1)if A∈[1,4] A^2 ∈ ? ←find interval 2)if A ∈ [−1,4] A^2 ∈ ? 3) y=(1/(A )) and A∈ [1,4] y∈ ? 4)y=(1/(∣A∣)) A∈[−1,4] y∈ ?

$${i}\:{found}\:{some}\:{interesting}\:{basic}\:{question} \\ $$$${hence}\:{sharing}... \\ $$$$\left.\mathrm{1}\right){if}\:{A}\in\left[\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:\:?\:\leftarrow{find}\:{interval}\: \\ $$$$\left.\mathrm{2}\right){if}\:{A}\:\in\:\left[−\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:? \\ $$$$\left.\mathrm{3}\right)\:{y}=\frac{\mathrm{1}}{{A}\:\:}\:\:{and}\:{A}\in\:\:\:\:\left[\mathrm{1},\mathrm{4}\right]\:\:{y}\in\:? \\ $$$$\left.\mathrm{4}\right){y}=\frac{\mathrm{1}}{\mid{A}\mid}\:\:{A}\in\left[−\mathrm{1},\mathrm{4}\right]\:\:\:{y}\in\:? \\ $$

Question Number 60510    Answers: 0   Comments: 3

Question Number 60508    Answers: 0   Comments: 0

prof Abdo pls restrict the numbers of input of question...

$${prof}\:{Abdo}\:\:{pls}\:{restrict}\:{the}\:\:{numbers}\:{of}\:{input}\:{of}\:{question}... \\ $$$$ \\ $$

Question Number 60506    Answers: 0   Comments: 1

calculate ∫∫_W ((√(2x^2 +3y^2 ))/(x+y)) dxdy with W ={(x,y)∈R^2 / 0<x<1 and 0<y<1.

$${calculate}\:\int\int_{{W}} \:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }}{{x}+{y}}\:{dxdy} \\ $$$${with}\:{W}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}.\right. \\ $$

Question Number 60504    Answers: 1   Comments: 2

let S_n =Σ_(k=1) ^n ((1^2 +2^2 +...k^2 )/(1^4 +2^4 +...+k^4 )) study the convergence of S_n

$$\:{let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}^{\mathrm{2}} \:+\mathrm{2}^{\mathrm{2}} \:+...{k}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{4}} \:+\mathrm{2}^{\mathrm{4}} \:+...+{k}^{\mathrm{4}} } \\ $$$${study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$

Question Number 60503    Answers: 1   Comments: 0

calculate Σ_(n=1) ^∞ ((1+2+3+...+n)/(1^3 +2^3 +3^3 +...+n^3 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+...+{n}^{\mathrm{3}} } \\ $$

Question Number 60502    Answers: 0   Comments: 2

let f(x) =arctan(2x) ln (1−x^2 ) 1) calculate f^′ (x) 2) determine f^((n)) (x) and f^((n)) (0) 3) developp f at integr serie .

$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{2}{x}\right)\:{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Question Number 60501    Answers: 1   Comments: 1

let A = ((( 1 1)),((1 1)) ) 1)calculate A^n 2) determine e^A and e^(−A) .

$${let}\:{A}\:=\begin{pmatrix}{\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{e}^{{A}} \:\:\:{and}\:{e}^{−{A}} \:. \\ $$$$ \\ $$

Question Number 60500    Answers: 0   Comments: 2

let A = (((1 1)),((−2 3)) ) 1) find A^(−1) 2) calculate A^n 3) determine e^A and e^(−2A) .

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{2}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}^{−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{A}} \:\:\:{and}\:{e}^{−\mathrm{2}{A}} \:. \\ $$

Question Number 60499    Answers: 0   Comments: 2

find the value of Σ_(n=1) ^∞ (((−1)^n )/(n^3 (n+1)^4 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Question Number 60498    Answers: 0   Comments: 4

let f(t) =∫_0 ^3 (√(t +x +x^2 ))dx with t ≥(1/4) 1) find a explicit form of f(t) 2) find also g(t) = ∫_0 ^3 (dx/(√(t+x +x^2 ))) 3) calculate ∫_0 ^3 (√(1+x+x^2 ))dx , ∫_0 ^3 (√(2 +x+x^2 ))dx ∫_0 ^3 (dx/(√(2+x +x^2 ))) .

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{{t}\:+{x}\:+{x}^{\mathrm{2}} }{dx}\:\:{with}\:{t}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{{t}+{x}\:+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\:,\:\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{\mathrm{2}\:+{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}+{x}\:+{x}^{\mathrm{2}} }}\:\:. \\ $$

Question Number 60595    Answers: 0   Comments: 2

let f(a) =∫_0 ^1 ((ln^2 (x))/((1−ax)^2 )) dx with ∣a∣<1 1) find a explicit form of f(a) 2) determine A(θ) =∫_0 ^1 ((ln^2 (x))/((1−(cosθ)x)^2 ))dx with 0<θ<(π/2)

$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{ax}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−\left({cos}\theta\right){x}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 60496    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((lnx)/((1−x)^2 ))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 60495    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(x))/((1−x^2 )^2 ))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 60494    Answers: 1   Comments: 1

find ∫ (√((√(2+x^2 ))−x))dx

$${find}\:\int\:\sqrt{\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }−{x}}{dx} \\ $$

Question Number 60493    Answers: 0   Comments: 0

let f(x)=(√(1+(√(1+x^2 )))) approximate f(x) by a polynome at v(0)

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${approximate}\:{f}\left({x}\right)\:{by}\:{a}\:{polynome} \\ $$$${at}\:{v}\left(\mathrm{0}\right) \\ $$

Question Number 60484    Answers: 1   Comments: 2

If a + b + c = 4 then find a^3 + b^3 + c^(3 ) = ?

$${If}\:\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{4} \\ $$$$ \\ $$$${then}\:{find} \\ $$$${a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}\:} =\:? \\ $$

Question Number 60481    Answers: 0   Comments: 0

Question Number 60856    Answers: 0   Comments: 0

if 0<x<1,lim_(n→+∞) ((x^x^x^.^.^.^x }n)/(((x^x )^x )^(x...}n) ))=? (? can be expressed by x)

$${if}\:\:\mathrm{0}<{x}<\mathrm{1},\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\left.{x}^{{x}^{{x}^{.^{.^{.^{{x}} } } } } } \right\}{n}}{\left(\left({x}^{{x}} \right)^{{x}} \right)^{\left.{x}...\right\}{n}} }=? \\ $$$$\left(?\:{can}\:{be}\:{expressed}\:{by}\:{x}\right) \\ $$

  Pg 1472      Pg 1473      Pg 1474      Pg 1475      Pg 1476      Pg 1477      Pg 1478      Pg 1479      Pg 1480      Pg 1481   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com