Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1467
Question Number 63120 Answers: 0 Comments: 0
$${x}^{\mathrm{1}/\mathrm{2}} \:\centerdot\:{x}^{\mathrm{1}/\mathrm{4}} \:\centerdot\:{x}^{\mathrm{1}/\mathrm{8}} \:\centerdot\:{x}^{\mathrm{1}/\mathrm{16}} \:...\:\mathrm{to}\:\infty\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 63117 Answers: 1 Comments: 1
$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{2}+\mathrm{3sin}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 63116 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}+×}{\sqrt{\mathrm{1}+×^{\mathrm{2}} }}{dx} \\ $$
Question Number 63108 Answers: 2 Comments: 1
Question Number 63103 Answers: 1 Comments: 2
Question Number 63101 Answers: 3 Comments: 1
$${calculate}\:\:{S}\:=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+..... \\ $$
Question Number 63095 Answers: 1 Comments: 0
Question Number 63090 Answers: 0 Comments: 0
$${s}=\sqrt{{a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{d}\right)^{\mathrm{2}} }+\sqrt{\left({b}−{a}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt{{b}^{\mathrm{2}} +\left({c}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }+{c}−{d} \\ $$$$\:{p}=\:{a}\left({a}^{\mathrm{2}} −{d}\right)+\left({a}+{b}\right)\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{b}\left({c}−{b}^{\mathrm{2}} \right) \\ $$$${Find}\:{a},{b},{c},\:{or}\:{d}\:\:{in}\:{terms}\:{of}\:{s} \\ $$$${if}\:\:{p}\:{is}\:{maximum}.\: \\ $$$${Assume}\:\:\:\:{a},{b},{c},{d}\:\geqslant\mathrm{0}\:. \\ $$
Question Number 63089 Answers: 0 Comments: 3
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+\left({tanx}\right)^{\sqrt{\mathrm{2}}} }\:. \\ $$
Question Number 63084 Answers: 0 Comments: 1
$${let}\:{f}\left({z}\right)\:=\frac{{cos}\left(\mathrm{3}{z}\right)}{{z}^{\mathrm{2}} } \\ $$$${calculate}\:{Res}\left({f},\mathrm{0}\right)\:. \\ $$
Question Number 63080 Answers: 0 Comments: 0
$$\:\int\frac{\sqrt{\frac{{sinx}}{{x}^{\mathrm{3}} }}}{{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 63079 Answers: 0 Comments: 1
$${let}\:{f}\left({z}\right)\:=\frac{{sin}\left(\mathrm{2}{z}\right)}{{z}^{{n}} }\:\:\:\:{with}\:{n}\:{integr}\:{natural}\: \\ $$$${calculate}\:{Res}\left({f},\mathrm{0}\right) \\ $$
Question Number 63073 Answers: 2 Comments: 1
Question Number 63065 Answers: 0 Comments: 3
$$\mathrm{If}\:{I}=\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:,\:\mathrm{then} \\ $$
Question Number 63076 Answers: 0 Comments: 0
$${show}\:{that}\:{f}:{A}\rightarrow{B}\:{is}\:{bijection}\:{then}\:{f}\left({A}_{\mathrm{1}} ^{{c}} \right)=\left[{f}\left({A}_{\mathrm{1}} \right)\right]^{{c}} \\ $$
Question Number 63059 Answers: 0 Comments: 0
Question Number 63054 Answers: 0 Comments: 0
$${if}\:\Sigma\mid{a}_{{n}} \:\mid\:{is}\:{convergent},\:{then} \\ $$$${prove}\:{that}\:{there}\:{exists}\: \\ $$$${a}\:{subsequence}\:\left\{{n}_{{k}} {a}_{{n}_{{k}} } \right\}\:\:{with} \\ $$$$\underset{{k}\rightarrow\infty} {\mathrm{lim}}{n}_{{k}} {a}_{{n}_{{k}} } =\mathrm{0} \\ $$
Question Number 63034 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({ln}\left({cosx}\right)\right)^{\mathrm{2}} \:{dx}\: \\ $$
Question Number 63033 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\: \\ $$
Question Number 63032 Answers: 0 Comments: 1
$${let}\:{f}\left({z}\right)\:=\frac{\mathrm{1}}{{sin}\left(\pi{z}\right)}\:\:{calculate}\:{Res}\left({f},{n}\right)\:{with}\:{n}\:{integr} \\ $$
Question Number 63031 Answers: 0 Comments: 2
$${let}\:{f}\left({z}\right)\:=\frac{{sin}\left({z}\right)}{{z}^{\mathrm{2}} }\:\:{calculate}\:{Res}\left({f},\mathrm{0}\right) \\ $$
Question Number 63026 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}{cosx}\:−\mathrm{3}{sinx}}{dx} \\ $$
Question Number 63023 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:. \\ $$
Question Number 63021 Answers: 2 Comments: 3
$${solve}\:{this}\:{equation} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{y}} ={y}^{{x}} \\ $$$$ \\ $$$$ \\ $$$${x},{y}\in\mathbb{R}. \\ $$
Question Number 63017 Answers: 0 Comments: 0
$$\mathrm{445}\boldsymbol{{x}}\frac{\mathrm{5}\boldsymbol{{x}}}{} \\ $$$$ \\ $$
Question Number 63016 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hexagon}\:\mathrm{are}\:\mathrm{enlarged}\:\mathrm{by}\: \\ $$$$\mathrm{three}\:\mathrm{times}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{and}\:\mathrm{old}\:\mathrm{hexagon} \\ $$
Pg 1462 Pg 1463 Pg 1464 Pg 1465 Pg 1466 Pg 1467 Pg 1468 Pg 1469 Pg 1470 Pg 1471
Terms of Service
Privacy Policy
Contact: info@tinkutara.com