Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1461
Question Number 65287 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={x}\mid{x}\mid\:\:\:\:\mathrm{2}\pi\:{periodic}\:\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series} \\ $$
Question Number 65286 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){find}\:\:\:{f}\left({a}\right)=\int_{−\infty} ^{+\infty} \:\:{e}^{−{ax}^{\mathrm{2}} } {cos}\left(\mathrm{3}−{x}^{\mathrm{2}} \right){dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{3}{x}^{\mathrm{2}} } {cos}\left(\mathrm{3}−{x}^{\mathrm{2}} \right){dx} \\ $$$$ \\ $$
Question Number 65285 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−{x}\right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 65281 Answers: 1 Comments: 1
Question Number 65277 Answers: 0 Comments: 1
Question Number 65276 Answers: 0 Comments: 1
Question Number 65271 Answers: 1 Comments: 0
$${x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$
Question Number 65270 Answers: 1 Comments: 0
$${d}/{dx}\:{x}−\mathrm{2} \\ $$
Question Number 65269 Answers: 0 Comments: 0
Question Number 65261 Answers: 0 Comments: 1
$${solve}\mathrm{4}−{xy}+{yz}−{xz} \\ $$
Question Number 65239 Answers: 1 Comments: 8
Question Number 65235 Answers: 1 Comments: 2
Question Number 65227 Answers: 0 Comments: 3
Question Number 65219 Answers: 1 Comments: 1
Question Number 65217 Answers: 0 Comments: 1
Question Number 65214 Answers: 1 Comments: 3
$${Prove}\:\:{or}\:\:{disprove}\:\:\:{that}\:\:\:\mathrm{2}^{\mathrm{101}} \:\mid\:{n}^{{n}} \:−\:\mathrm{101}\:. \\ $$
Question Number 65212 Answers: 1 Comments: 1
Question Number 65203 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 65202 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{2}{a}\mathrm{cos}\:\theta+{a}^{\mathrm{2}} }{d}\theta,\:{a}^{\mathrm{2}} <\mathrm{1} \\ $$$$\mathrm{answer}? \\ $$
Question Number 65200 Answers: 2 Comments: 0
Question Number 65199 Answers: 1 Comments: 0
Question Number 65198 Answers: 0 Comments: 5
$${let}\:{a}\in\mathbb{R}^{+} \:,\:{and}\:{x}>\mathrm{0} \\ $$$${x}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{a}\right){x}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{1}=\mathrm{0} \\ $$$${find}\:{x} \\ $$
Question Number 65196 Answers: 0 Comments: 0
$$\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\:+\frac{\mathrm{1}}{{lnx}}\right){dx} \\ $$
Question Number 65195 Answers: 0 Comments: 0
$${find}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({ln}\left({tanx}\right){dx}\right. \\ $$
Question Number 65194 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}\:{with}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\:{and}\:{x}>\mathrm{0} \\ $$
Question Number 65193 Answers: 0 Comments: 1
$${U}_{{n}} \:{is}\:{a}\:{sequence}\:{wich}\:{verify}\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} ={n}\:{for}\:{all}\:{integr}\:{n} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{intrem}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\frac{{U}_{{n}} }{{n}^{\mathrm{2}} } \\ $$
Pg 1456 Pg 1457 Pg 1458 Pg 1459 Pg 1460 Pg 1461 Pg 1462 Pg 1463 Pg 1464 Pg 1465
Terms of Service
Privacy Policy
Contact: info@tinkutara.com