Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1458

Question Number 64097    Answers: 1   Comments: 1

Question Number 64092    Answers: 1   Comments: 0

prove that u=mgh

$${prove}\:{that}\: \\ $$$${u}={mgh} \\ $$

Question Number 64085    Answers: 0   Comments: 0

please just read equation of a line and a plane in vectors. i don′t understand (r−a)×b=0 ??

$${please}\:{just}\:{read}\:{equation}\:{of}\:{a}\:{line}\:{and}\:{a}\:{plane}\:{in}\:{vectors}. \\ $$$${i}\:{don}'{t}\:{understand}\: \\ $$$$\:\:\left(\boldsymbol{{r}}−\boldsymbol{{a}}\right)×\boldsymbol{{b}}=\mathrm{0}\:\:?? \\ $$

Question Number 64086    Answers: 0   Comments: 5

if 3x + 5y = 1 use Bezout′s identity to find the value of x and y

$${if}\:\:\:\mathrm{3}{x}\:+\:\mathrm{5}{y}\:=\:\mathrm{1} \\ $$$${use}\:{Bezout}'{s}\:{identity}\:{to}\:{find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$

Question Number 64081    Answers: 0   Comments: 0

∫e^(sec x) ∙ sec^3 x(sin^2 x+cos x+sin x+sin x cos x) dx=

$$\int{e}^{\mathrm{sec}\:{x}} \centerdot\:\mathrm{sec}^{\mathrm{3}} {x}\left(\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}\:{x}+\mathrm{sin}\:{x}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\right)\:{dx}= \\ $$

Question Number 64080    Answers: 1   Comments: 2

∫((sin x−cos x)/(√(1−sin 2x))) e^(sin x) cos x dx =

$$\int\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}}\:{e}^{\mathrm{sin}\:{x}} \mathrm{cos}\:{x}\:{dx}\:= \\ $$

Question Number 64079    Answers: 0   Comments: 0

∫_( 0) ^π ((x sin x)/(1+cos^2 x)) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} {x}}\:{dx}\:= \\ $$

Question Number 64078    Answers: 0   Comments: 3

Question Number 64077    Answers: 0   Comments: 0

Question Number 64074    Answers: 0   Comments: 0

by using laplase transform find laplase(tan(t))

$${by}\:{using}\:{laplase}\:{transform}\:{find}\:{laplase}\left({tan}\left({t}\right)\right) \\ $$

Question Number 64068    Answers: 0   Comments: 1

calculate ∫_0 ^π ((tsint)/(3+sin^2 t)) dt

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{tsint}}{\mathrm{3}+{sin}^{\mathrm{2}} {t}}\:{dt}\: \\ $$

Question Number 64066    Answers: 1   Comments: 0

let α ,β and λ the roots of x^3 +2x−1 =0 find the value of A =α^2 +β^2 +λ^2 and B =α^3 +β^3 +λ^3 .

$${let}\:\alpha\:,\beta\:{and}\:\lambda\:{the}\:{roots}\:{of}\:{x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{1}\:=\mathrm{0}\:{find}\:{the}\:{value}\:{of} \\ $$$${A}\:=\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \:+\lambda^{\mathrm{2}} \:{and}\:\:{B}\:=\alpha^{\mathrm{3}} \:+\beta^{\mathrm{3}} \:+\lambda^{\mathrm{3}} \:. \\ $$

Question Number 64065    Answers: 0   Comments: 3

calculate ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 64061    Answers: 1   Comments: 0

(2x+3)^2 +25/(x+3)^2 =(√2)

$$\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{25}/\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}} \\ $$

Question Number 64060    Answers: 0   Comments: 1

(2x+3)^2 +25/(x+3)^2 =(√2)

$$\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{25}/\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}} \\ $$

Question Number 64047    Answers: 0   Comments: 3

Question Number 64037    Answers: 0   Comments: 1

reduction formulas for n∈N, some n>0, some n>1 ∫sin^n x dx=−(1/n)cos x sin^(n−1) x +((n−1)/n)∫sin^(n−2) x dx ∫cos^n x dx=(1/n)sin x cos^(n−1) x +((n−1)/n)∫cos^(n−2) x dx ∫tan^n x dx=(1/(n−1))tan^(n−1) x −∫tan^(n−2) x dx ∫sec^n x dx=(1/(n−1))tan x sec^(n−2) x +((n−2)/(n−1))∫sec^(n−2) x dx ∫csc^n x dx=−(1/(n−1))cot x csc^(n−2) x +((n−2)/(n−1))∫csc^(n−2) x dx ∫cot^n x dx=−(1/(n−1))cot^(n−1) x −∫cot^(n−2) x dx

$$\mathrm{reduction}\:\mathrm{formulas}\:\mathrm{for}\:{n}\in\mathbb{N},\:\mathrm{some}\:{n}>\mathrm{0},\:\mathrm{some}\:{n}>\mathrm{1} \\ $$$$ \\ $$$$\int\mathrm{sin}^{{n}} \:{x}\:{dx}=−\frac{\mathrm{1}}{{n}}\mathrm{cos}\:{x}\:\mathrm{sin}^{{n}−\mathrm{1}} \:{x}\:+\frac{{n}−\mathrm{1}}{{n}}\int\mathrm{sin}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$$$\int\mathrm{cos}^{{n}} \:{x}\:{dx}=\frac{\mathrm{1}}{{n}}\mathrm{sin}\:{x}\:\mathrm{cos}^{{n}−\mathrm{1}} \:{x}\:+\frac{{n}−\mathrm{1}}{{n}}\int\mathrm{cos}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$$$\int\mathrm{tan}^{{n}} \:{x}\:{dx}=\frac{\mathrm{1}}{{n}−\mathrm{1}}\mathrm{tan}^{{n}−\mathrm{1}} \:{x}\:−\int\mathrm{tan}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$$$\int\mathrm{sec}^{{n}} \:{x}\:{dx}=\frac{\mathrm{1}}{{n}−\mathrm{1}}\mathrm{tan}\:{x}\:\mathrm{sec}^{{n}−\mathrm{2}} \:{x}\:+\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}\int\mathrm{sec}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$$$\int\mathrm{csc}^{{n}} \:{x}\:{dx}=−\frac{\mathrm{1}}{{n}−\mathrm{1}}\mathrm{cot}\:{x}\:\mathrm{csc}^{{n}−\mathrm{2}} \:{x}\:+\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}\int\mathrm{csc}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$$$\int\mathrm{cot}^{{n}} \:{x}\:{dx}=−\frac{\mathrm{1}}{{n}−\mathrm{1}}\mathrm{cot}^{{n}−\mathrm{1}} \:{x}\:−\int\mathrm{cot}^{{n}−\mathrm{2}} \:{x}\:{dx} \\ $$

Question Number 64018    Answers: 0   Comments: 11

sin3θ=? cos3θ=? tan3θ=?

$${sin}\mathrm{3}\theta=? \\ $$$${cos}\mathrm{3}\theta=? \\ $$$${tan}\mathrm{3}\theta=? \\ $$

Question Number 64017    Answers: 0   Comments: 4

why can′t we differentiate or intergrate powers of trigonometric functions such as 1) ∫cos^2 xdx? 3) ∫tan^2 2xdx 2)∫sin^2 xdx? 4) ∫sin^(10) x hence how do we solve such problems.?

$${why}\:{can}'{t}\:{we}\:{differentiate}\:{or}\:{intergrate}\:{powers}\:{of}\:{trigonometric} \\ $$$${functions}\:{such}\:{as}\: \\ $$$$\left.\mathrm{1}\left.\right)\:\int{cos}^{\mathrm{2}} {xdx}?\:\:\:\:\mathrm{3}\right)\:\int{tan}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$$\left.\mathrm{2}\left.\right)\int{sin}^{\mathrm{2}} {xdx}?\:\:\:\:\:\mathrm{4}\right)\:\int{sin}^{\mathrm{10}} {x} \\ $$$${hence}\:{how}\:{do}\:{we}\:{solve}\:{such}\:{problems}.? \\ $$

Question Number 64015    Answers: 1   Comments: 0

How can such questions be solved.? x^2 −∣7∣ +10=0 x^2 −∣x∣−6>0

$$\:{How}\:{can}\:{such}\:{questions}\:{be}\:{solved}.? \\ $$$$\:\:{x}^{\mathrm{2}} −\mid\mathrm{7}\mid\:+\mathrm{10}=\mathrm{0} \\ $$$$\:\:{x}^{\mathrm{2}} −\mid{x}\mid−\mathrm{6}>\mathrm{0} \\ $$$$\:\: \\ $$

Question Number 64012    Answers: 1   Comments: 0

Question Number 64011    Answers: 1   Comments: 3

lim_(x→0) ((x^x −1)/(xlnx))

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{x}^{\mathrm{x}} −\mathrm{1}}{\mathrm{xlnx}} \\ $$

Question Number 64009    Answers: 2   Comments: 1

Question Number 63985    Answers: 1   Comments: 0

Question Number 63984    Answers: 1   Comments: 5

is it true? e^(lnx) = x? if so then (d/dx)(e^(lnx) )=?

$${is}\:{it}\:{true}? \\ $$$$\:\:{e}^{{lnx}} =\:{x}? \\ $$$${if}\:{so}\:{then}\:\:\frac{{d}}{{dx}}\left({e}^{{lnx}} \right)=? \\ $$

Question Number 63983    Answers: 1   Comments: 0

Please i need someones help on this How do i find an Asymptote to a curve? and also how find a general solution for a differential equation.

$${Please}\:{i}\:{need}\:{someones}\:{help}\:{on}\:{this}\: \\ $$$${How}\:{do}\:{i}\:{find}\:{an}\:{Asymptote}\:{to}\:{a}\:{curve}? \\ $$$${and}\:{also}\:{how}\:{find}\:{a}\:{general}\:{solution}\:{for}\:{a}\:{differential}\: \\ $$$${equation}. \\ $$$$ \\ $$

  Pg 1453      Pg 1454      Pg 1455      Pg 1456      Pg 1457      Pg 1458      Pg 1459      Pg 1460      Pg 1461      Pg 1462   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com