Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1457

Question Number 58584    Answers: 0   Comments: 0

((X−λ)/(√(λ/n)))

$$\frac{{X}−\lambda}{\sqrt{\frac{\lambda}{{n}}}} \\ $$

Question Number 58576    Answers: 2   Comments: 0

lim_(x→∞) (((x−20)^(70) .(2x+3)^(30) )/((4x−1)^(15) .(5−x^(85) )))

$$\underset{{x}\rightarrow\infty} {{lim}}\:\:\frac{\left({x}−\mathrm{20}\right)^{\mathrm{70}} .\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{30}} }{\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{15}} .\left(\mathrm{5}−{x}^{\mathrm{85}} \right)} \\ $$

Question Number 58569    Answers: 1   Comments: 0

A vector has magnitude 6 and bearing 100°.write it in the form ai+bj

$${A}\:{vector}\:{has}\:{magnitude} \\ $$$$\mathrm{6}\:{and}\:{bearing}\:\mathrm{100}°.{write} \\ $$$${it}\:{in}\:{the}\:{form}\:{ai}+{bj} \\ $$

Question Number 58568    Answers: 2   Comments: 1

factorize px^2 −py^2 +qy^2 −px^2

$${factorize} \\ $$$${px}^{\mathrm{2}} −{py}^{\mathrm{2}} +{qy}^{\mathrm{2}} −{px}^{\mathrm{2}} \\ $$

Question Number 58567    Answers: 0   Comments: 1

A regular polygon of (2k+1) sides has 140 as the size of each interior angle.Find k

$$\:{A}\:{regular}\:{polygon}\:{of}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\:{sides} \\ $$$${has}\:\mathrm{140}\:{as}\:{the}\:{size}\:{of}\:{each}\:{interior} \\ $$$${angle}.{Find}\:{k} \\ $$

Question Number 58547    Answers: 1   Comments: 1

Question Number 58558    Answers: 1   Comments: 0

lim_(x→0) ((√(2x^2 − 2ax + b − 3))/(x ((x^5 + 8))^(1/3) )) = (2/3) Value of ab is ...

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{2}{ax}\:+\:{b}\:−\:\mathrm{3}}}{{x}\:\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{5}} \:+\:\mathrm{8}}}\:\:=\:\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${Value}\:\:{of}\:\:\:{ab}\:\:{is}\:\:... \\ $$

Question Number 58530    Answers: 2   Comments: 0

find lim_(x→0) ((1−cos(2x) cos(3x^3 ))/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\:{cos}\left(\mathrm{3}{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 58521    Answers: 1   Comments: 0

sin 16^° =? cos 16^° =? without using cos(3θ) algebric method please

$$\boldsymbol{{sin}}\:\mathrm{16}^{°} \:=? \\ $$$$\boldsymbol{{cos}}\:\mathrm{16}^{°} \:=? \\ $$$$\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{cos}}\left(\mathrm{3}\theta\right) \\ $$$$\boldsymbol{{algebric}}\:\boldsymbol{{method}}\:\boldsymbol{{please}} \\ $$

Question Number 58519    Answers: 1   Comments: 1

Question Number 58512    Answers: 1   Comments: 1

Question Number 58508    Answers: 1   Comments: 0

Question Number 58501    Answers: 2   Comments: 0

a and b are roots of this equation : x^(2018) − 2x + 1 = 0 Calculate the value of 2 + (a+b) + (a^2 +b^2 ) + (a^3 + b^3 ) + … + (a^(2017) + b^(2017) )

$${a}\:\:{and}\:\:{b}\:\:{are}\:\:{roots}\:\:{of}\:\:{this}\:\:{equation}\:\:: \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2018}} \:−\:\mathrm{2}{x}\:+\:\mathrm{1}\:\:=\:\:\mathrm{0} \\ $$$${Calculate}\:\:{the}\:\:{value}\:\:\:{of} \\ $$$$\:\:\mathrm{2}\:+\:\left({a}+{b}\right)\:+\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\:+\:\left({a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \right)\:+\:\ldots\:+\:\left({a}^{\mathrm{2017}} \:+\:{b}^{\mathrm{2017}} \right) \\ $$

Question Number 58500    Answers: 2   Comments: 0

change in simplest form : tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/((√(1+x^2 ))−(√(1−x^2 ))))

$${change}\:{in}\:{simplest}\:{form}\:: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$

Question Number 58493    Answers: 1   Comments: 0

Question Number 58488    Answers: 0   Comments: 2

let f(x) =∫ (dt/(x +cost +cos(2t))) (x real) 1) find a explicit form of f(x) 2)determine also ∫ (dt/((x+cost +cos(2t))^2 )) 3) find ∫ (dt/(1+cos(t)+cos(2t))) and ∫ (dt/((3 +cos(t)+cos(2t))^2 ))

$${let}\:{f}\left({x}\right)\:=\int\:\:\:\frac{{dt}}{{x}\:+{cost}\:+{cos}\left(\mathrm{2}{t}\right)}\:\:\left({x}\:{real}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:\int\:\:\frac{{dt}}{\left({x}+{cost}\:+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int\:\:\:\frac{{dt}}{\mathrm{1}+{cos}\left({t}\right)+{cos}\left(\mathrm{2}{t}\right)}\:{and} \\ $$$$\int\:\:\:\frac{{dt}}{\left(\mathrm{3}\:+{cos}\left({t}\right)+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} } \\ $$

Question Number 58487    Answers: 0   Comments: 3

let f(x) =∫_(π/4) ^(π/3) (dt/(2+xsint)) 1) find a explicit form of f(x) 2)determine also g(x)=∫_(π/4) ^(π/3) ((sint)/((2+xsint)^2 ))dt 3) find the value of ∫_(π/4) ^(π/3) (dt/(2+3sint)) and ∫_(π/4) ^(π/3) ((sint)/((2+3sint)^2 ))dt

$${let}\:{f}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{dt}}{\mathrm{2}+{xsint}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:{g}\left({x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sint}}{\left(\mathrm{2}+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\frac{{dt}}{\mathrm{2}+\mathrm{3}{sint}} \\ $$$${and}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sint}}{\left(\mathrm{2}+\mathrm{3}{sint}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 58480    Answers: 0   Comments: 2

Question Number 58479    Answers: 0   Comments: 1

Question Number 58478    Answers: 2   Comments: 1

{1} ∫((x^2 −2)/(x^4 +8x^2 +4)) dx = ? {2} Shortest distance between the parabolas y^2 =4x and y^2 =2x−6 is ?

$$\left\{\mathrm{1}\right\}\:\:\:\int\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=\:? \\ $$$$\left\{\mathrm{2}\right\}\:\:{Shortest}\:{distance}\:{between}\:{the} \\ $$$${parabolas}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{y}^{\mathrm{2}} =\mathrm{2}{x}−\mathrm{6}\:{is}\:? \\ $$

Question Number 58467    Answers: 1   Comments: 3

Question Number 58462    Answers: 1   Comments: 0

a, b, c, d ∈ R^+ a + b + c + d = 1 Prove that : abc + bcd + cda + dab ≤ (1/(27)) + ((176)/(27)) abcd

$${a},\:{b},\:{c},\:{d}\:\:\in\:\:\mathbb{R}^{+} \\ $$$${a}\:+\:{b}\:+\:{c}\:+\:{d}\:\:=\:\:\mathrm{1} \\ $$$${Prove}\:\:{that}\:\:: \\ $$$${abc}\:+\:{bcd}\:+\:{cda}\:+\:{dab}\:\:\leqslant\:\:\frac{\mathrm{1}}{\mathrm{27}}\:\:+\:\:\frac{\mathrm{176}}{\mathrm{27}}\:{abcd} \\ $$

Question Number 58454    Answers: 0   Comments: 0

Question Number 58447    Answers: 2   Comments: 1

Question Number 58438    Answers: 1   Comments: 4

lim_(x→∞) (((x−1)/x))^x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}−\mathrm{1}}{{x}}\right)^{{x}} \\ $$

Question Number 58422    Answers: 1   Comments: 0

  Pg 1452      Pg 1453      Pg 1454      Pg 1455      Pg 1456      Pg 1457      Pg 1458      Pg 1459      Pg 1460      Pg 1461   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com