Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1456

Question Number 63031    Answers: 0   Comments: 2

let f(z) =((sin(z))/z^2 ) calculate Res(f,0)

$${let}\:{f}\left({z}\right)\:=\frac{{sin}\left({z}\right)}{{z}^{\mathrm{2}} }\:\:{calculate}\:{Res}\left({f},\mathrm{0}\right) \\ $$

Question Number 63026    Answers: 0   Comments: 0

calculate ∫_0 ^π ((sin(2x))/(2cosx −3sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}{cosx}\:−\mathrm{3}{sinx}}{dx} \\ $$

Question Number 63023    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 −3)/(x^4 +x^2 +1))dx .

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:. \\ $$

Question Number 63021    Answers: 2   Comments: 3

solve this equation x^y =y^x x,y∈R.

$${solve}\:{this}\:{equation} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{y}} ={y}^{{x}} \\ $$$$ \\ $$$$ \\ $$$${x},{y}\in\mathbb{R}. \\ $$

Question Number 63017    Answers: 0   Comments: 0

445x((5x)/)

$$\mathrm{445}\boldsymbol{{x}}\frac{\mathrm{5}\boldsymbol{{x}}}{} \\ $$$$ \\ $$

Question Number 63016    Answers: 1   Comments: 0

The sides of a hexagon are enlarged by three times. Find the ratio of the areas of the new and old hexagon

$$\mathrm{The}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hexagon}\:\mathrm{are}\:\mathrm{enlarged}\:\mathrm{by}\: \\ $$$$\mathrm{three}\:\mathrm{times}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{and}\:\mathrm{old}\:\mathrm{hexagon} \\ $$

Question Number 63015    Answers: 0   Comments: 0

f(x,y,z)= x(p+z)+y(p−z) +((4x^3 )/(p+z))+((4y^3 )/(p−z))+4(x+y)^2 (y−x) ∀ p(x,y)=c+(x−y)(√(1+(x+y)^2 )) +(x^2 −y^2 ) Determine x,y,z such that f is maximum. (c is a constant). Assume y≥x.

$${f}\left({x},{y},{z}\right)=\:{x}\left({p}+{z}\right)+{y}\left({p}−{z}\right) \\ $$$$\:\:\:\:+\frac{\mathrm{4}{x}^{\mathrm{3}} }{{p}+{z}}+\frac{\mathrm{4}{y}^{\mathrm{3}} }{{p}−{z}}+\mathrm{4}\left({x}+{y}\right)^{\mathrm{2}} \left({y}−{x}\right) \\ $$$$\forall\:\:{p}\left({x},{y}\right)={c}+\left({x}−{y}\right)\sqrt{\mathrm{1}+\left({x}+{y}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right) \\ $$$${Determine}\:{x},{y},{z}\:{such}\:{that}\:{f}\:{is} \\ $$$${maximum}.\:\left({c}\:{is}\:{a}\:{constant}\right). \\ $$$${Assume}\:{y}\geqslant{x}. \\ $$

Question Number 62998    Answers: 0   Comments: 12

Solve for x: 5^x +6x=7

$${Solve}\:{for}\:{x}:\:\:\mathrm{5}^{\boldsymbol{{x}}} +\mathrm{6}\boldsymbol{{x}}=\mathrm{7} \\ $$

Question Number 62997    Answers: 0   Comments: 1

∫((ln(1+xsin^2 (x)))/(sin^2 (x))) dx

$$\int\frac{{ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} \left({x}\right)\right)}{{sin}^{\mathrm{2}} \left({x}\right)}\:{dx} \\ $$

Question Number 62995    Answers: 0   Comments: 0

Question Number 62987    Answers: 0   Comments: 0

Question Number 62983    Answers: 3   Comments: 0

If tan 2θ tan θ = 1, then θ =

$$\mathrm{If}\:\:\:\mathrm{tan}\:\mathrm{2}\theta\:\mathrm{tan}\:\theta\:=\:\mathrm{1},\:\mathrm{then}\:\theta\:= \\ $$

Question Number 62982    Answers: 1   Comments: 0

((tg((x/2))−1)/(ctg((x/2))))=2sin((x/2)) x∈(180°;540°)

$$\frac{\boldsymbol{\mathrm{tg}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)−\mathrm{1}}{\boldsymbol{\mathrm{ctg}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)}=\mathrm{2}\boldsymbol{\mathrm{sin}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)\:\:\boldsymbol{\mathrm{x}}\in\left(\mathrm{180}°;\mathrm{540}°\right) \\ $$$$ \\ $$

Question Number 62981    Answers: 1   Comments: 1

Question Number 62970    Answers: 1   Comments: 1

Question Number 62945    Answers: 1   Comments: 0

Find the greatest coefficient in the expansion of (6 − 4x)^(−3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\:\left(\mathrm{6}\:−\:\mathrm{4x}\right)^{−\mathrm{3}} \\ $$

Question Number 62942    Answers: 1   Comments: 10

Make r the subject of the formular: S = ((a(r^n − 1))/(r − 1))

$$\mathrm{Make}\:\:\mathrm{r}\:\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formular}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\:\:=\:\:\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}} \:−\:\mathrm{1}\right)}{\mathrm{r}\:−\:\mathrm{1}} \\ $$

Question Number 62938    Answers: 1   Comments: 1

Question Number 62937    Answers: 1   Comments: 3

∫_0 ^( x) (1/(1+x^2 )) dx

$$\int_{\mathrm{0}} ^{\:\:\mathrm{x}} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 62930    Answers: 0   Comments: 0

find the value ∫_0 ^1 x^(√x) dx (study first the convergence)

$${find}\:{the}\:{value}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\sqrt{{x}}} {dx}\:\left({study}\:{first}\:{the}\:{convergence}\right) \\ $$

Question Number 62925    Answers: 1   Comments: 0

Three friends , Boakye , kwame and kojo thinking that they are decieving their parents decided to take turns to run away from their parent . Boakye run away on monday of the first week. After how many weeks will he run again on monday?

$$\mathrm{Three}\:\mathrm{friends}\:,\:\mathrm{Boakye}\:,\:\mathrm{kwame}\:\mathrm{and}\: \\ $$$$\mathrm{kojo}\:\mathrm{thinking}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{decieving}\: \\ $$$$\mathrm{their}\:\mathrm{parents}\:\mathrm{decided}\:\mathrm{to}\:\mathrm{take}\:\mathrm{turns}\:\mathrm{to}\: \\ $$$$\mathrm{run}\:\mathrm{away}\:\mathrm{from}\:\mathrm{their}\:\mathrm{parent}\:. \\ $$$$\mathrm{Boakye}\:\mathrm{run}\:\mathrm{away}\:\mathrm{on}\:\mathrm{monday}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{week}.\:\mathrm{After}\:\mathrm{how}\:\mathrm{many}\:\:\mathrm{weeks}\:\mathrm{will}\: \\ $$$$\mathrm{he}\:\mathrm{run}\:\mathrm{again}\:\mathrm{on}\:\mathrm{monday}? \\ $$

Question Number 62924    Answers: 1   Comments: 2

find min_((a,b)∈R^2 ) ∫_(−1) ^1 (ax+b)^2 dx

$${find}\:{min}_{\left({a},{b}\right)\in{R}^{\mathrm{2}} } \:\:\:\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left({ax}+{b}\right)^{\mathrm{2}} {dx} \\ $$

Question Number 62919    Answers: 0   Comments: 1

kelvin and price were contesting for an election in the year 2016, kelvin lost the election and prince won the election thursday of the second week of December. After how many days will prince win the election again on thursday if the eletion is postponed to the first week of january. suppose (kelvin continious to loose the eletion again in the next four years to come). please help me solve this quetion

$$\mathrm{kelvin}\:\mathrm{and}\:\mathrm{price}\:\mathrm{were}\:\mathrm{contesting}\:\mathrm{for}\:\mathrm{an} \\ $$$$\mathrm{election}\:\mathrm{in}\:\mathrm{the}\:\mathrm{year}\:\mathrm{2016},\:\mathrm{kelvin}\:\mathrm{lost}\:\mathrm{the} \\ $$$$\mathrm{election}\:\mathrm{and}\:\:\mathrm{prince}\:\mathrm{won}\:\mathrm{the}\:\mathrm{election}\:\mathrm{thursday} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{second}\:\mathrm{week}\:\mathrm{of}\:\mathrm{December}.\:\mathrm{After} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{days}\:\mathrm{will}\:\mathrm{prince}\:\mathrm{win}\:\mathrm{the}\:\mathrm{election} \\ $$$$\mathrm{again}\:\mathrm{on}\:\mathrm{thursday}\:\mathrm{if}\:\mathrm{the}\:\mathrm{eletion}\:\mathrm{is}\:\mathrm{postponed}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{week}\:\mathrm{of}\:\mathrm{january}.\:\mathrm{suppose}\:\left(\mathrm{kelvin}\:\mathrm{continious}\right. \\ $$$$\mathrm{to}\:\mathrm{loose}\:\mathrm{the}\:\mathrm{eletion}\:\mathrm{again}\:\mathrm{in}\:\mathrm{the}\:\mathrm{next}\:\mathrm{four} \\ $$$$\left.\mathrm{years}\:\mathrm{to}\:\mathrm{come}\right).\: \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{quetion} \\ $$

Question Number 62914    Answers: 1   Comments: 0

Question Number 62912    Answers: 1   Comments: 0

Question Number 62962    Answers: 0   Comments: 0

P(x)=tan^(−1) (x)=Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2n+1)) P_(1000) (x)=? what is this sum in terms of x?

$${P}\left({x}\right)=\mathrm{tan}^{−\mathrm{1}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\: \\ $$$${P}_{\mathrm{1000}} \left({x}\right)=?\:{what}\:{is}\:{this}\:{sum}\:{in}\:{terms}\:{of}\:{x}? \\ $$

  Pg 1451      Pg 1452      Pg 1453      Pg 1454      Pg 1455      Pg 1456      Pg 1457      Pg 1458      Pg 1459      Pg 1460   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com