Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1456

Question Number 65372    Answers: 0   Comments: 4

I=∫_1 ^e (dx/(x(1+ln^2 x)))

$${I}=\int_{\mathrm{1}} ^{{e}} \:\frac{{dx}}{{x}\left(\mathrm{1}+{ln}^{\mathrm{2}} {x}\right)} \\ $$

Question Number 65367    Answers: 2   Comments: 1

Question Number 65366    Answers: 2   Comments: 2

Question Number 65365    Answers: 2   Comments: 0

3sinA+4cosB=6 3cosA+4sinB=1 find angle C

$$\mathrm{3sinA}+\mathrm{4cosB}=\mathrm{6} \\ $$$$\mathrm{3cosA}+\mathrm{4sinB}=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{angle}\:\mathrm{C} \\ $$

Question Number 65359    Answers: 0   Comments: 0

φφ

$$\phi\phi \\ $$

Question Number 65356    Answers: 1   Comments: 1

Question Number 65355    Answers: 2   Comments: 1

find ∫ (dx/(√((x+1)(x+2)(x+3))))

$${find}\:\int\:\:\:\frac{{dx}}{\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}} \\ $$

Question Number 65354    Answers: 0   Comments: 3

find ∫ (dx/(√(x^2 +x−2)))

$${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{2}}} \\ $$$$ \\ $$

Question Number 65352    Answers: 0   Comments: 1

give the integralA_n = ∫_1 ^(+∞) (dt/(1+x^n )) with n integr and n≥2 at form of serie.

$${give}\:{the}\:{integralA}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dt}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$${at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 65347    Answers: 1   Comments: 0

Question Number 65345    Answers: 1   Comments: 4

find the maximum value of sin^(2018) x +cos^(2019) x ?

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}^{\mathrm{2018}} \mathrm{x}\:+\mathrm{cos}^{\mathrm{2019}} \mathrm{x}\:? \\ $$

Question Number 65335    Answers: 0   Comments: 0

Question Number 65334    Answers: 1   Comments: 0

Question Number 65332    Answers: 0   Comments: 1

Question Number 65333    Answers: 1   Comments: 1

Question Number 65314    Answers: 0   Comments: 1

Question Number 65312    Answers: 0   Comments: 2

Question Number 65307    Answers: 1   Comments: 0

∫(((4x+3)dx)/(√(2x^2 +2x−3))) = ?

$$\int\frac{\left(\mathrm{4}{x}+\mathrm{3}\right){dx}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}}}\:=\:?\: \\ $$

Question Number 65325    Answers: 1   Comments: 3

Question Number 65324    Answers: 0   Comments: 3

Question Number 65321    Answers: 0   Comments: 0

Question Number 65320    Answers: 0   Comments: 1

Question Number 65319    Answers: 3   Comments: 2

Question Number 65301    Answers: 1   Comments: 1

Question Number 65300    Answers: 0   Comments: 1

Question Number 65297    Answers: 0   Comments: 1

let U_n a sequence wich verify U_n +U_(n+1) +U_(n+2) =n(−1)^n for all integr n calculate interms of n A_n =Σ_(k=0) ^n (−1)^k U_k the first term is U_0

$${let}\:\:\:{U}_{{n}} \:\:{a}\:{sequence}\:{wich}\:{verify}\:\:{U}_{{n}} \:+{U}_{{n}+\mathrm{1}} +{U}_{{n}+\mathrm{2}} \:={n}\left(−\mathrm{1}\right)^{{n}} \\ $$$${for}\:{all}\:{integr}\:{n}\:\:\:{calculate}\:{interms}\:{of}\:{n} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{U}_{{k}} \\ $$$${the}\:{first}\:{term}\:{is}\:{U}_{\mathrm{0}} \\ $$

  Pg 1451      Pg 1452      Pg 1453      Pg 1454      Pg 1455      Pg 1456      Pg 1457      Pg 1458      Pg 1459      Pg 1460   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com