Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1456
Question Number 65372 Answers: 0 Comments: 4
$${I}=\int_{\mathrm{1}} ^{{e}} \:\frac{{dx}}{{x}\left(\mathrm{1}+{ln}^{\mathrm{2}} {x}\right)} \\ $$
Question Number 65367 Answers: 2 Comments: 1
Question Number 65366 Answers: 2 Comments: 2
Question Number 65365 Answers: 2 Comments: 0
$$\mathrm{3sinA}+\mathrm{4cosB}=\mathrm{6} \\ $$$$\mathrm{3cosA}+\mathrm{4sinB}=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{angle}\:\mathrm{C} \\ $$
Question Number 65359 Answers: 0 Comments: 0
$$\phi\phi \\ $$
Question Number 65356 Answers: 1 Comments: 1
Question Number 65355 Answers: 2 Comments: 1
$${find}\:\int\:\:\:\frac{{dx}}{\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}} \\ $$
Question Number 65354 Answers: 0 Comments: 3
$${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{2}}} \\ $$$$ \\ $$
Question Number 65352 Answers: 0 Comments: 1
$${give}\:{the}\:{integralA}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dt}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$${at}\:{form}\:{of}\:{serie}. \\ $$
Question Number 65347 Answers: 1 Comments: 0
Question Number 65345 Answers: 1 Comments: 4
$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}^{\mathrm{2018}} \mathrm{x}\:+\mathrm{cos}^{\mathrm{2019}} \mathrm{x}\:? \\ $$
Question Number 65335 Answers: 0 Comments: 0
Question Number 65334 Answers: 1 Comments: 0
Question Number 65332 Answers: 0 Comments: 1
Question Number 65333 Answers: 1 Comments: 1
Question Number 65314 Answers: 0 Comments: 1
Question Number 65312 Answers: 0 Comments: 2
Question Number 65307 Answers: 1 Comments: 0
$$\int\frac{\left(\mathrm{4}{x}+\mathrm{3}\right){dx}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}}}\:=\:?\: \\ $$
Question Number 65325 Answers: 1 Comments: 3
Question Number 65324 Answers: 0 Comments: 3
Question Number 65321 Answers: 0 Comments: 0
Question Number 65320 Answers: 0 Comments: 1
Question Number 65319 Answers: 3 Comments: 2
Question Number 65301 Answers: 1 Comments: 1
Question Number 65300 Answers: 0 Comments: 1
Question Number 65297 Answers: 0 Comments: 1
$${let}\:\:\:{U}_{{n}} \:\:{a}\:{sequence}\:{wich}\:{verify}\:\:{U}_{{n}} \:+{U}_{{n}+\mathrm{1}} +{U}_{{n}+\mathrm{2}} \:={n}\left(−\mathrm{1}\right)^{{n}} \\ $$$${for}\:{all}\:{integr}\:{n}\:\:\:{calculate}\:{interms}\:{of}\:{n} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{U}_{{k}} \\ $$$${the}\:{first}\:{term}\:{is}\:{U}_{\mathrm{0}} \\ $$
Pg 1451 Pg 1452 Pg 1453 Pg 1454 Pg 1455 Pg 1456 Pg 1457 Pg 1458 Pg 1459 Pg 1460
Terms of Service
Privacy Policy
Contact: info@tinkutara.com