Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1455
Question Number 66431 Answers: 1 Comments: 0
$$\: \\ $$$$\:\boldsymbol{\mathrm{Determine}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{y}}: \\ $$$$\: \\ $$$$\:\begin{cases}{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\sqrt{\boldsymbol{\mathrm{i}}}}} +\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{10}}\\{\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{xy}}\right)^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{21}}\end{cases} \\ $$$$\: \\ $$
Question Number 66421 Answers: 1 Comments: 0
$${show}\:{that}\:{for}\:{a}\:{given}\:{complex}\:{number}\:{z} \\ $$$$\:{z}^{{n}} \:=\:{r}^{{n}} \:\left({cosn}\theta\:+\:{isinn}\theta\right)\: \\ $$
Question Number 66420 Answers: 0 Comments: 3
$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\:\mathrm{2}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\frac{{dy}}{{dx}}\:−\:{e}^{−{x}} \:=\:\mathrm{4} \\ $$
Question Number 66418 Answers: 0 Comments: 0
$${what}\:{operation}\:{on}\:{interger}\:{used}\:{in}\:\mathrm{9}\left(\mathrm{7}.\mathrm{8}\right)=\left(\mathrm{9}.\mathrm{7}\right).\mathrm{8}?? \\ $$
Question Number 66406 Answers: 0 Comments: 0
Question Number 66405 Answers: 0 Comments: 0
Question Number 66404 Answers: 0 Comments: 3
Question Number 66403 Answers: 0 Comments: 0
Question Number 66401 Answers: 0 Comments: 0
Question Number 66399 Answers: 0 Comments: 1
$${Show}\:{that}\:{for}\:{all}\:{real} \\ $$$${values}\:{of}\:{x};\: \\ $$$$\:\:{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\:\mathrm{6}{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:\mathrm{10}\:>\mathrm{0} \\ $$
Question Number 66396 Answers: 1 Comments: 0
$$\: \\ $$$$\:\boldsymbol{\mathrm{Seja}}\:\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\frac{\mathrm{1}}{\sqrt{\boldsymbol{{e}}^{\boldsymbol{\pi}} }}} \left[\sqrt[{\mathrm{9999999}}]{\left(\boldsymbol{{x}}+\mathrm{11}\right)!}\right]} \:=\:\mathrm{1}. \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Calcule}}\:\:\frac{\boldsymbol{\mathrm{x}}_{\mathrm{1}} }{\boldsymbol{\mathrm{x}}_{\mathrm{2}} }+\mathrm{0},\mathrm{9}. \\ $$
Question Number 66413 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\sqrt{\mathrm{8}+\boldsymbol{\mathrm{log}}_{\mathrm{6}} \left(\boldsymbol{\mathrm{x}}!\right)}+\sqrt{\mathrm{17}−\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}!} \left(\mathrm{6}\right)}\:=\:\mathrm{7} \\ $$$$\: \\ $$
Question Number 66412 Answers: 1 Comments: 3
$${if} \\ $$$$ \\ $$$${f}\left({x}\right)={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$${find} \\ $$$$ \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$
Question Number 66382 Answers: 0 Comments: 14
$${Give}\:{me}\:{any}\:{Quintic},\:{i}\:{shall}\:{solve} \\ $$$${it}.\:{For}\:{sure}! \\ $$$${At}^{\mathrm{5}} +{Bt}^{\mathrm{4}} +{Ct}^{\mathrm{3}} +{Dt}^{\mathrm{2}} +{Et}+{F}=\mathrm{0} \\ $$$${wont}\:{even}\:{assume}\:{A}=\mathrm{1},\:{or}\:{B}=\mathrm{0}. \\ $$$${but}\:{if}\:{A}+{C}+{E}={B}+{D}+{F}\: \\ $$$${then}\:{my}\:{formula}\:{dont}\:{work} \\ $$$${but}\:{then}\:{obviously}\:{t}=−\mathrm{1}\:{is}\:{a}\:{root}! \\ $$
Question Number 66379 Answers: 0 Comments: 2
Question Number 66381 Answers: 0 Comments: 0
Question Number 66356 Answers: 1 Comments: 0
Question Number 66355 Answers: 0 Comments: 1
$${V}\mathrm{alue}\:\mathrm{of}\:{x}\:\mathrm{satiesfied}\:{y}=\frac{\mathrm{log}_{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$$${negative}\:{value}\:\mathrm{is}... \\ $$$$\mathrm{a}.\:−\mathrm{1}<{x}<\sqrt{\mathrm{2}} \\ $$$${b}.\:−\sqrt{\mathrm{2}}<{x}<\mathrm{1} \\ $$$${c}.\:−\sqrt{\mathrm{2}}<{x}<\sqrt{\mathrm{2}} \\ $$$${d}.\:−\sqrt{\mathrm{2}}<{x}<−\mathrm{1} \\ $$$${e}.\:{x}<−\mathrm{2} \\ $$
Question Number 66354 Answers: 0 Comments: 1
$$\mathrm{If}\:\:\mathrm{2}{x}+{y}=\mathrm{8}\:\mathrm{and} \\ $$$$\left({x}+{y}\right)=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{log}_{\mathrm{8}} \mathrm{36} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{3y}=... \\ $$$$\mathrm{a}.\:\mathrm{28} \\ $$$$\mathrm{b}.\:\mathrm{22} \\ $$$$\mathrm{c}.\:\mathrm{20} \\ $$$$\mathrm{d}.\:\mathrm{16} \\ $$$$\mathrm{e}.\:\mathrm{12} \\ $$
Question Number 66351 Answers: 0 Comments: 1
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\ $$
Question Number 66350 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:\:\:\:{n}\in{N} \\ $$
Question Number 66349 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dx} \\ $$
Question Number 66348 Answers: 0 Comments: 0
$${find}\:{nature}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{e}^{{x}} −{cosx}} \\ $$
Question Number 66347 Answers: 0 Comments: 0
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{I}_{{n}+\mathrm{1}} −{I}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right){prove}\:{thst}\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xlnx}}{{x}^{\mathrm{2}} −\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \\ $$
Question Number 66346 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{7}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}{dt} \\ $$
Question Number 66345 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Pg 1450 Pg 1451 Pg 1452 Pg 1453 Pg 1454 Pg 1455 Pg 1456 Pg 1457 Pg 1458 Pg 1459
Terms of Service
Privacy Policy
Contact: [email protected]