Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1455

Question Number 65040    Answers: 0   Comments: 0

what is the curve of the curve caused by the earth to the space time _ fabric

$${what}\:{is}\:{the}\:{curve}\:{of}\:{the}\:{curve}\:{caused}\:\:{by} \\ $$$${the}\:{earth}\:{to}\:{the}\:{space}\:{time}\:\_\:{fabric} \\ $$

Question Number 65022    Answers: 1   Comments: 4

Question Number 65015    Answers: 1   Comments: 3

∫(((√(x+1)) − (√(x−1)))/((√(x+1)) + (√(x−1)))) dx

$$\int\frac{\sqrt{{x}+\mathrm{1}}\:−\:\sqrt{{x}−\mathrm{1}}}{\sqrt{{x}+\mathrm{1}}\:+\:\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$

Question Number 65013    Answers: 1   Comments: 0

why do we divide each term by n when given the question lim_(x→∞) ((3 +2n)/(1+n)) ?

$${why}\:{do}\:{we}\:{divide}\:{each}\:{term}\:{by}\:{n}\:{when}\:{given}\:{the}\:{question} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}\:+\mathrm{2}{n}}{\mathrm{1}+{n}}\:? \\ $$

Question Number 65011    Answers: 5   Comments: 1

1.(i)Evaluate:∫(1/(sin x−cos x+(√2)))dx (ii)Evaluate:∫2^2^2^x 2^2^x 2^x dx (iii)Evaluate:∫((cos^3 x)/(sin^2 x+sin x))dx 2.cosec [tan^(−1) {cos (cot^(−1) (sec(sin^(−1) a)))}]=What? 3.Prove that, sin [cot^(−1) {cos (tan^(−1) x)}]=(√((x^2 +1)/(x^2 +2))) 4.Mention Order and Degree and state also if it is linear or non-linear. y+(d^2 y/dx^2 )=((19)/(25))∫y^2 dx

$$\mathrm{1}.\left(\mathrm{i}\right)\mathrm{Evaluate}:\int\frac{\mathrm{1}}{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}+\sqrt{\mathrm{2}}}{dx} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Evaluate}:\int\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{{x}} } } \mathrm{2}^{\mathrm{2}^{{x}} } \mathrm{2}^{{x}} \:{dx} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Evaluate}:\int\frac{\mathrm{cos}\:^{\mathrm{3}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:{x}}{dx} \\ $$$$\mathrm{2}.\mathrm{cosec}\:\left[\mathrm{tan}^{−\mathrm{1}} \left\{\mathrm{cos}\:\left(\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{sec}\left(\mathrm{sin}^{−\mathrm{1}} {a}\right)\right)\right)\right\}\right]=\mathrm{What}? \\ $$$$\mathrm{3}.\mathrm{Prove}\:\mathrm{that},\:\:\mathrm{sin}\:\left[\mathrm{cot}^{−\mathrm{1}} \left\{\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} {x}\right)\right\}\right]=\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$$$\mathrm{4}.\mathrm{Mention}\:\mathrm{Order}\:\mathrm{and}\:\mathrm{Degree}\:\mathrm{and}\:\:\mathrm{state}\:\mathrm{also}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{linear}\:\mathrm{or}\:\mathrm{non}-{l}\mathrm{inear}. \\ $$$$\:\:\:\:\:{y}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{19}}{\mathrm{25}}\int{y}^{\mathrm{2}} \:{dx} \\ $$

Question Number 65004    Answers: 0   Comments: 1

let U_n = ∫_(1/n) ^(2/n) Γ(x)Γ(1−x)dx with n≥3 1) calculate and determine lim_(n→+∞) U_n 2) study the convergence of Σ U_n

$${let}\:{U}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{2}}{{n}}} \:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right){dx}\:\:\:\:{with}\:{n}\geqslant\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{and}\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 65003    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(Γ(x))) with Γ(x) =∫_0 ^∞ t^(x−1) e^(−t) dt (x>0)

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\Gamma\left({x}\right)}\:\:{with}\:\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\:\:\left({x}>\mathrm{0}\right) \\ $$

Question Number 64994    Answers: 1   Comments: 1

∫(√(tanh(x))) dx

$$\int\sqrt{{tanh}\left({x}\right)}\:{dx} \\ $$

Question Number 64993    Answers: 0   Comments: 0

let f(a) =∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +a^2 )^2 ))dx with a>0 1) calculate f(a) 2) find the values of ∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +1)^2 )) and ∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +3)^2 ))dx .

$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)−{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)−{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)−{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 64984    Answers: 1   Comments: 2

∫_0 ^3 x ∣x^2 − x − 2∣ dx = ?

$$\underset{\mathrm{0}} {\int}\:\overset{\mathrm{3}} {\:}\:{x}\:\mid{x}^{\mathrm{2}} \:−\:{x}\:−\:\mathrm{2}\mid\:{dx}\:\:=\:\:? \\ $$

Question Number 64975    Answers: 0   Comments: 1

Question Number 64973    Answers: 1   Comments: 0

Question Number 64971    Answers: 0   Comments: 3

Question Number 64970    Answers: 0   Comments: 9

let f(a)=∫_0 ^∞ ((cos(x^2 ) +sin(x^2 ))/((x^2 +a^2 )^2 )) dx with a>0 1) calculate f(a) 2) find the values of ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx and ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +3)^2 ))dx

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)\:+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 64968    Answers: 0   Comments: 1

Question Number 64966    Answers: 0   Comments: 0

Question Number 64955    Answers: 0   Comments: 3

prove that Σ_(k=1) ^n k∙(((k+1)!)/2^(k+1) )=(((n+2)!)/2^(n+1) )−1

$${prove}\:{that}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\centerdot\frac{\left({k}+\mathrm{1}\right)!}{\mathrm{2}^{{k}+\mathrm{1}} }=\frac{\left({n}+\mathrm{2}\right)!}{\mathrm{2}^{{n}+\mathrm{1}} }−\mathrm{1} \\ $$

Question Number 64951    Answers: 1   Comments: 0

Question Number 64949    Answers: 1   Comments: 1

Question Number 64941    Answers: 0   Comments: 0

$$ \\ $$

Question Number 64916    Answers: 1   Comments: 6

Question Number 64909    Answers: 1   Comments: 2

Question Number 64905    Answers: 0   Comments: 0

∫log (tan x)dx

$$\int\mathrm{log}\:\left(\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 64904    Answers: 0   Comments: 2

calculate ∫_1 ^2 ∫_0 ^x (1/((x^2 +y^2 )^(3/2) ))dydx

$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dydx}\: \\ $$

Question Number 64903    Answers: 1   Comments: 2

1, 3, 7, 15, 30, 57, 103, x What′s x ?

$$\mathrm{1},\:\mathrm{3},\:\mathrm{7},\:\mathrm{15},\:\mathrm{30},\:\mathrm{57},\:\mathrm{103},\:{x} \\ $$$${What}'{s}\:\:{x}\:? \\ $$

Question Number 64901    Answers: 1   Comments: 11

  Pg 1450      Pg 1451      Pg 1452      Pg 1453      Pg 1454      Pg 1455      Pg 1456      Pg 1457      Pg 1458      Pg 1459   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com