Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1454
Question Number 66518 Answers: 0 Comments: 2
Question Number 66517 Answers: 1 Comments: 1
$${find}\:{the}\:{area}\:{cos}\left(\mathrm{2}\theta\right) \\ $$
Question Number 66513 Answers: 1 Comments: 4
$${when}\:{finding}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{2}{x}\:+\mathrm{4}\right)^{\mathrm{5}} {dx}\: \\ $$$${must}\:{we}\:{change}\:{limits}? \\ $$
Question Number 66508 Answers: 0 Comments: 3
Question Number 66502 Answers: 1 Comments: 0
$${find}\:{the}\:{area}\:{about}\:{cos}\left(\mathrm{2}\theta\right) \\ $$
Question Number 66498 Answers: 1 Comments: 3
Question Number 66497 Answers: 1 Comments: 0
Question Number 66489 Answers: 3 Comments: 0
Question Number 66483 Answers: 0 Comments: 4
$$\:{calculate}\:\:\:\:\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\zeta\left({k}\right)\:\:\:\:\:\:\:{if}\:\:\:\:\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{{n}^{{s}} }\: \\ $$
Question Number 66478 Answers: 0 Comments: 2
$$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\left[\frac{\boldsymbol{{log}}_{\boldsymbol{{x}}} \left(\mathrm{2}\right)−\mathrm{1}}{\boldsymbol{{log}}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)+\mathrm{1}}\right]=? \\ $$$$\: \\ $$
Question Number 66476 Answers: 0 Comments: 1
Question Number 66474 Answers: 0 Comments: 2
$$\int{e}^{{x}^{\mathrm{2}} } {dx}=? \\ $$
Question Number 66472 Answers: 1 Comments: 0
$$\begin{cases}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}=\mathrm{11}}\\{\frac{\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}}=\mathrm{1}\frac{\mathrm{1}}{\mathrm{5}}}\end{cases} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Qual}}\:\:\acute {\boldsymbol{\mathrm{e}}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{par}}\:\:\boldsymbol{\mathrm{ordenado}}\:\:\boldsymbol{\mathrm{na}}\:\:\boldsymbol{\mathrm{forma}}\:\:\boldsymbol{\mathrm{a}}^{\sqrt{\boldsymbol{\mathrm{p}}}} \:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{b}}^{\sqrt{\boldsymbol{\mathrm{q}}}} \\ $$$$\:\boldsymbol{\mathrm{que}}\:\:\boldsymbol{\mathrm{satisfaz}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{sistema}}\:\:\boldsymbol{\mathrm{como}}\:\:\boldsymbol{\mathrm{possivel}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{determinado}}? \\ $$
Question Number 66470 Answers: 0 Comments: 5
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{8}\right)^{\mathrm{3}} }\:\:{withn}>\mathrm{1} \\ $$
Question Number 66469 Answers: 0 Comments: 1
Question Number 66468 Answers: 0 Comments: 1
$${calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:\:{with}\:{n}>\mathrm{1} \\ $$
Question Number 66467 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({n}+{x}^{{n}} \right)^{\mathrm{2}} }\:\:\:{with}\:{n}>\mathrm{1} \\ $$
Question Number 66466 Answers: 0 Comments: 1
$${find}\:\:{f}\left({a},{b}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({ax}\right){cos}\left({bx}\right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)}{dx}\:\:{with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({x}\right){cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)}{dx} \\ $$
Question Number 66465 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{i}\right)\left(\:{x}^{\mathrm{2}} \:+\mathrm{4}{j}\right)}\:\:\:{with}\:{i}={e}^{\frac{{i}\pi}{\mathrm{2}}} \:{and}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$
Question Number 66464 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Question Number 66681 Answers: 0 Comments: 2
Question Number 66462 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){simplify}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}^{{k}} \left({x}\right){cos}\left({kx}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}^{{k}} \left(\frac{\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 66461 Answers: 0 Comments: 0
$${x}\left({n}\right)=\mathrm{3}{n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{7} \\ $$$${find}\:{even}\:{and}\:{odd}\:{component} \\ $$
Question Number 66459 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{by}\:{residus}\:{method}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$
Question Number 66446 Answers: 0 Comments: 1
$$\:\:{Find}\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{E}\left({x}\right)}\:−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 66444 Answers: 0 Comments: 1
$$\:{calculate}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left({x}!\right)^{\frac{\mathrm{1}}{{x}}} \:\:\:\:\:\:\:{if}\:\:\:\:\:{x}!=\Pi\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}} \:{e}^{−{t}} {dt} \\ $$
Pg 1449 Pg 1450 Pg 1451 Pg 1452 Pg 1453 Pg 1454 Pg 1455 Pg 1456 Pg 1457 Pg 1458
Terms of Service
Privacy Policy
Contact: [email protected]