Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1453
Question Number 65690 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 65687 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{sin}\left(\mathrm{3}{t}\right)}{\mathrm{5}−\mathrm{3}{cos}\left({t}\right)}\:{dt}=\mathrm{0}\:\mathrm{using}\:\:\mathrm{Residue}\:\mathrm{theorem} \\ $$
Question Number 65683 Answers: 0 Comments: 0
Question Number 65681 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\left({x}+{r}\right)\right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{x}+{k}}\right)\:{dx} \\ $$
Question Number 65680 Answers: 1 Comments: 0
Question Number 65679 Answers: 0 Comments: 2
$${let}\:\:{A}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}^{{n}} {x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:{the}\:{serie}\:\Sigma{A}_{{n}} \:\:\:\:{and}\:\Sigma{n}^{{n}} \:{A}_{{n}} \\ $$
Question Number 65678 Answers: 1 Comments: 1
$${calculate}\:\:\int\:\:\:\:\frac{\mathrm{3}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)\left({x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{3}\right)}{dx} \\ $$
Question Number 65677 Answers: 0 Comments: 0
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\sqrt{{k}^{\mathrm{2}} +{k}}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{S}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\left({S}_{{n}} \right)\:{is}\:{convergent}. \\ $$
Question Number 65676 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx} \\ $$
Question Number 65675 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:\int\:\frac{{dx}}{\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{2}\right)}} \\ $$
Question Number 65674 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 65673 Answers: 0 Comments: 1
$${find}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 65665 Answers: 0 Comments: 1
$${calculate}\:\int_{−\mathrm{2}} ^{+\infty} \:\:\frac{{e}^{−{x}} }{\sqrt{{x}+\mathrm{2}}}\:{dx} \\ $$$$ \\ $$
Question Number 65664 Answers: 1 Comments: 0
$${solve}\:\frac{\sqrt{\mathrm{1}−{x}}−\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{2}{x}+\mathrm{1}}}\:=\frac{{x}+\mathrm{1}}{\mathrm{3}} \\ $$
Question Number 65724 Answers: 2 Comments: 0
Question Number 65723 Answers: 1 Comments: 0
Question Number 65700 Answers: 0 Comments: 1
Question Number 65651 Answers: 0 Comments: 1
Question Number 65704 Answers: 0 Comments: 1
$$\int{ln}^{\mathrm{2}} {xsin}\left({x}\right){dx} \\ $$
Question Number 65601 Answers: 0 Comments: 1
$$\mathrm{1}.\mathrm{If}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\boldsymbol{{n}}−\mathrm{1}} \mathrm{log}\:\boldsymbol{{x}},\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\boldsymbol{{x}}^{\mathrm{2}} \frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{\boldsymbol{{dx}}^{\mathrm{2}} }+\left(\mathrm{3}−\mathrm{2}\boldsymbol{{n}}\right)\boldsymbol{{x}}\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\left(\boldsymbol{{n}}−\mathrm{1}\right)^{\mathrm{2}} \boldsymbol{{y}}=\mathrm{0} \\ $$$$\mathrm{2}.\boldsymbol{\mathrm{I}}\mathrm{f}\:\frac{\mathrm{mtan}\:\left(\alpha−\theta\right)}{\mathrm{cos}\:^{\mathrm{2}} \theta}=\frac{{n}\mathrm{tan}\:\theta}{\mathrm{cos}\:^{\mathrm{2}} \left(\alpha−\theta\right)},\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\theta=\frac{\mathrm{1}}{\mathrm{2}}\left[\alpha−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{n}−{m}}{{n}+{m}}\mathrm{tan}\:\alpha\right)\right] \\ $$
Question Number 65593 Answers: 1 Comments: 5
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {dx}\:= \\ $$
Question Number 65592 Answers: 1 Comments: 0
Question Number 65587 Answers: 1 Comments: 4
$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\mathrm{1}^{\mathrm{3}} \:+\:\mathrm{2}^{\mathrm{3}} \:+\:\mathrm{3}^{\mathrm{3}} \:+\:\ldots\:+\:{n}^{\mathrm{3}} \:\:=\:\:\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}\right)^{\mathrm{2}} \\ $$
Question Number 65589 Answers: 0 Comments: 8
Question Number 65581 Answers: 0 Comments: 1
Question Number 65580 Answers: 0 Comments: 0
Pg 1448 Pg 1449 Pg 1450 Pg 1451 Pg 1452 Pg 1453 Pg 1454 Pg 1455 Pg 1456 Pg 1457
Terms of Service
Privacy Policy
Contact: info@tinkutara.com