Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1448

Question Number 63751    Answers: 0   Comments: 0

Where is sir tanmay

$$\mathrm{Where}\:\mathrm{is}\:\mathrm{sir}\:\mathrm{tanmay} \\ $$

Question Number 63790    Answers: 2   Comments: 0

Question Number 63789    Answers: 0   Comments: 0

Question Number 63788    Answers: 1   Comments: 0

Question Number 63750    Answers: 1   Comments: 2

Question Number 63748    Answers: 0   Comments: 0

Question Number 63747    Answers: 0   Comments: 1

What does sin^(−2) x mean?

$${What}\:{does}\:{sin}^{−\mathrm{2}} {x}\:{mean}? \\ $$

Question Number 63792    Answers: 0   Comments: 0

Question Number 63738    Answers: 0   Comments: 0

useful formula ======== ∀a∈R^+ :∀b ∈R: a sin x +b cos x =(√(a^2 +b^2 ))sin (x+arctan (b/a)) ∫(dx/(a sin x +b cos x))= =(1/(√(a^2 +b^2 )))∫(dx/(sin (x+arctan (b/a))))= [t=x+arctan (b/a) → dx=dt] (1/(√(a^2 +b^2 )))∫(dt/(sin t))=−(1/(√(a^2 +b^2 )))ln ((1/(sin t))+(1/(tan t))) = =−(1/(√(a^2 +b^2 )))ln ∣(((√(a^2 +b^2 ))−b sin x +a cos x)/(a sin x +b cos x))∣ +C

$$\mathrm{useful}\:\mathrm{formula} \\ $$$$======== \\ $$$$ \\ $$$$\forall{a}\in\mathbb{R}^{+} :\forall{b}\:\in\mathbb{R}:\:{a}\:\mathrm{sin}\:{x}\:+{b}\:\mathrm{cos}\:{x}\:=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{sin}\:\left({x}+\mathrm{arctan}\:\frac{{b}}{{a}}\right) \\ $$$$\int\frac{{dx}}{{a}\:\mathrm{sin}\:{x}\:+{b}\:\mathrm{cos}\:{x}}= \\ $$$$=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\int\frac{{dx}}{\mathrm{sin}\:\left({x}+\mathrm{arctan}\:\frac{{b}}{{a}}\right)}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\mathrm{arctan}\:\frac{{b}}{{a}}\:\:\rightarrow\:{dx}={dt}\right] \\ $$$$\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\int\frac{{dt}}{\mathrm{sin}\:{t}}=−\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{sin}\:{t}}+\frac{\mathrm{1}}{\mathrm{tan}\:{t}}\right)\:= \\ $$$$=−\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\mathrm{ln}\:\mid\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{b}\:\mathrm{sin}\:{x}\:+{a}\:\mathrm{cos}\:{x}}{{a}\:\mathrm{sin}\:{x}\:+{b}\:\mathrm{cos}\:{x}}\mid\:+{C} \\ $$

Question Number 63722    Answers: 1   Comments: 6

1) calculate ∫ (x^2 −x+2)(√(x^2 −x+1))dx 2)find the value of ∫_0 ^1 (x^2 −x+2)(√(x^2 −x +1))dx .

$$\left.\mathrm{1}\right)\:{calculate}\:\int\:\left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}{dx}\:. \\ $$

Question Number 63721    Answers: 1   Comments: 2

calculate ∫ (dx/(√((x−1)(2−x))))

$${calculate}\:\int\:\:\frac{{dx}}{\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}} \\ $$

Question Number 63720    Answers: 1   Comments: 2

calculate ∫(√((x−3)(2−x)))dx

$${calculate}\:\int\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dx} \\ $$

Question Number 63711    Answers: 1   Comments: 1

calculate ∫_0 ^π (dx/((√3)cosx +(√2)sinx))

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\sqrt{\mathrm{3}}{cosx}\:+\sqrt{\mathrm{2}}{sinx}} \\ $$

Question Number 63710    Answers: 0   Comments: 1

Question Number 63703    Answers: 1   Comments: 2

sin^3 x+cos^3 x=1−(1/2)sin2x :x∈[0,2π]. find x

$${sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}\:\::{x}\in\left[\mathrm{0},\mathrm{2}\pi\right]. \\ $$$${find}\:\:{x} \\ $$

Question Number 63700    Answers: 0   Comments: 0

Question Number 63698    Answers: 0   Comments: 0

Question Number 63693    Answers: 1   Comments: 2

find the general solution for sin5θ+sin3θ= 1

$${find}\:{the}\:{general}\:{solution}\:{for}\: \\ $$$$\:{sin}\mathrm{5}\theta+{sin}\mathrm{3}\theta=\:\mathrm{1} \\ $$

Question Number 63689    Answers: 0   Comments: 3

Show that if a∣b then an∣bn

$${Show}\:{that}\:\:{if}\:\:{a}\mid{b}\:\:{then}\:{an}\mid{bn} \\ $$

Question Number 63684    Answers: 0   Comments: 0

cot 118

$$\mathrm{cot}\:\mathrm{118} \\ $$

Question Number 63682    Answers: 0   Comments: 0

given diameter 25mm half of the drill point angle =60 cutting velocity=44000mm/minute length=60mm feedrate=0.25mm/revolution determine the time needed to drill a through hole

$${given}\:{diameter}\:\mathrm{25}{mm} \\ $$$${half}\:{of}\:{the}\:{drill}\:{point}\:{angle}\:=\mathrm{60} \\ $$$${cutting}\:{velocity}=\mathrm{44000}{mm}/{minute} \\ $$$${length}=\mathrm{60}{mm} \\ $$$${feedrate}=\mathrm{0}.\mathrm{25}{mm}/{revolution} \\ $$$${determine}\:{the}\:{time}\:{needed}\:{to}\:{drill}\:{a}\:{through}\:{hole} \\ $$

Question Number 63678    Answers: 0   Comments: 1

Question Number 63674    Answers: 0   Comments: 2

Show that the number 122^n − 102^n − 21^n is always one less than a multiple of 2020. For every positive integer n.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{number}\:\:\mathrm{122}^{\mathrm{n}} \:−\:\mathrm{102}^{\mathrm{n}} \:−\:\mathrm{21}^{\mathrm{n}} \:\:\mathrm{is}\:\mathrm{always}\:\mathrm{one}\:\mathrm{less}\:\mathrm{than}\:\mathrm{a} \\ $$$$\:\mathrm{multiple}\:\mathrm{of}\:\:\mathrm{2020}.\:\:\mathrm{For}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{integer}\:\:\mathrm{n}. \\ $$

Question Number 63667    Answers: 0   Comments: 3

1) calculate ∫_0 ^(2π) (dt/(cost +x sint)) wih x from R. 2) calculate ∫_0 ^(2π) ((sint)/((cost +xsint)^2 ))dt 3) find[the value of ∫_0 ^(2π) (dt/(cos(2t)+2sin(2t)))

$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{cost}\:+{x}\:{sint}}\:\:\:{wih}\:{x}\:{from}\:{R}. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\left({cost}\:+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\left[{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{cos}\left(\mathrm{2}{t}\right)+\mathrm{2}{sin}\left(\mathrm{2}{t}\right)}\right. \\ $$

Question Number 63666    Answers: 0   Comments: 3

calculate ∫_0 ^(2π) (dx/(2sinx +cosx))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dx}}{\mathrm{2}{sinx}\:+{cosx}} \\ $$

Question Number 63665    Answers: 0   Comments: 1

find the value of Σ_(n=1) ^∞ (((−1)^n )/(n^2 (n+1)^3 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

  Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450      Pg 1451      Pg 1452   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com