Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1448
Question Number 65480 Answers: 0 Comments: 1
$${x}^{\mathrm{4}} −\mathrm{15}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{24}=\mathrm{0}\:\:\: \\ $$$${solve}\:{for}\:{x}. \\ $$
Question Number 65478 Answers: 0 Comments: 1
Question Number 65473 Answers: 0 Comments: 1
Question Number 65472 Answers: 2 Comments: 1
$$ \\ $$$$ \\ $$$$\:\:\:{solve}\:\: \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left[\left(\mathrm{2}+{x}\right)^{{n}} −\mathrm{2}^{{n}} \right]}{{x}} \\ $$$$ \\ $$
Question Number 65468 Answers: 1 Comments: 2
$${To} \\ $$$${The}\:{app}\:{developer}\:{Tinkutara}.... \\ $$$${I}\:{cannot}\:{use}\:{the}\:{bottom}\:{line} \\ $$$${features}\:{of}\:{this}\:{app}. \\ $$$${Kindly}\:{resolve}\:{this}\:{issue}. \\ $$
Question Number 65464 Answers: 0 Comments: 1
Question Number 65463 Answers: 1 Comments: 0
Question Number 65457 Answers: 1 Comments: 0
$$\begin{cases}{\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}}+\frac{\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{a}}}=\mathrm{2}\sqrt{\mathrm{3}}}\\{\frac{\boldsymbol{\mathrm{b}}}{\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{a}}}=\mathrm{3}\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}},\boldsymbol{\mathrm{a}}\neq\boldsymbol{\mathrm{b}}\right] \\ $$
Question Number 65455 Answers: 0 Comments: 2
$${find}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}} }{\mathrm{2}^{{x}^{\mathrm{2}} } \left({x}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} \right)}{dx}\:\:\:\:\:\left({n}\:{from}\:{N}\:{and}\:{n}\geqslant\mathrm{1}\right) \\ $$$${study}\:{nature}\:{of}\:{the}\:{serie}\:\:\Sigma\:\mathrm{2}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$
Question Number 65450 Answers: 0 Comments: 1
Question Number 65446 Answers: 0 Comments: 1
$$\:\:\:\:\mathrm{10}^{\mathrm{x}} \:=\:\mathrm{x}^{\mathrm{1000}} \:\Rightarrow\:\mathrm{x}=? \\ $$
Question Number 65445 Answers: 0 Comments: 2
$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\:+{xsint}\right){dt}\:\:\: \\ $$
Question Number 65443 Answers: 0 Comments: 0
Question Number 65427 Answers: 0 Comments: 1
Question Number 65423 Answers: 1 Comments: 1
Question Number 65420 Answers: 0 Comments: 0
Question Number 65414 Answers: 0 Comments: 1
Question Number 65403 Answers: 0 Comments: 0
$${solve}\:{the}\left({de}\right)\:\:\:\:\:\:{x}^{\mathrm{3}} {y}^{''} −\mathrm{2}{xy}^{'} \:+\left({x}+\mathrm{1}\right){y}\:=\mathrm{0} \\ $$
Question Number 65402 Answers: 0 Comments: 1
$${solve}\:{the}\:\left({de}\right)\:\:\:\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{y}^{''} \:\:\:−{xy}^{'} \:={x}^{\mathrm{2}} −{x} \\ $$
Question Number 65401 Answers: 0 Comments: 1
$${let}\:{f}\left({x},{y}\right)=\left({x}+{y}\right)\sqrt{{x}+{y}−\mathrm{1}} \\ $$$${calculate}\:\:\int\int_{{D}} {f}\left({x},{y}\right){dxdy}\:{with}\: \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\:\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{1}\leqslant{y}\leqslant\sqrt{\mathrm{3}}\right\} \\ $$
Question Number 65400 Answers: 0 Comments: 0
$${find}\:{f}\left(\alpha\right)\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\frac{\alpha}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:\:\:{with}\:\alpha\geqslant\mathrm{0} \\ $$
Question Number 65398 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:\:{A}_{{n}} =\int\int_{\left[\mathrm{1},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\:{sin}\left({x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} \right)\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 65399 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int\int_{\left[\mathrm{0},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\frac{{dxdy}}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 65407 Answers: 0 Comments: 1
Question Number 65405 Answers: 0 Comments: 1
Question Number 65395 Answers: 1 Comments: 1
Pg 1443 Pg 1444 Pg 1445 Pg 1446 Pg 1447 Pg 1448 Pg 1449 Pg 1450 Pg 1451 Pg 1452
Terms of Service
Privacy Policy
Contact: info@tinkutara.com