Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1448

Question Number 65934    Answers: 3   Comments: 0

log_7 2=a log_2 3=b log_6 98=...

$$\:\mathrm{log}_{\mathrm{7}} \:\mathrm{2}={a} \\ $$$$\mathrm{log}_{\mathrm{2}} \:\mathrm{3}={b} \\ $$$$\:\mathrm{log}_{\mathrm{6}} \:\mathrm{98}=... \\ $$

Question Number 65931    Answers: 1   Comments: 0

(((log_6 36)^2 −(log_3 4)^2 )/(log_3 ((√(12)))))=...

$$\frac{\left(\mathrm{log}_{\mathrm{6}} \mathrm{36}\right)^{\mathrm{2}} −\left(\mathrm{log}_{\mathrm{3}} \mathrm{4}\right)^{\mathrm{2}} }{\mathrm{log}_{\mathrm{3}} \left(\sqrt{\mathrm{12}}\right)}=... \\ $$

Question Number 65930    Answers: 1   Comments: 0

If t=((x^2 −3)/(3x+7)) then log(1−∣t∣) can to find for a. 2<x<6 b.− 2<x<5 c.− 2≤x≤6 d. x≤−2 or x>6 e. x<−1 or x>3

$$\mathrm{If}\:{t}=\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\mathrm{3}{x}+\mathrm{7}}\:\mathrm{then} \\ $$$$\mathrm{log}\left(\mathrm{1}−\mid{t}\mid\right)\:\mathrm{can}\:\mathrm{to}\:\mathrm{find}\:\mathrm{for} \\ $$$$\mathrm{a}.\:\mathrm{2}<{x}<\mathrm{6} \\ $$$${b}.−\:\mathrm{2}<{x}<\mathrm{5} \\ $$$${c}.−\:\mathrm{2}\leqslant{x}\leqslant\mathrm{6} \\ $$$$\mathrm{d}.\:{x}\leqslant−\mathrm{2}\:\mathrm{or}\:{x}>\mathrm{6} \\ $$$${e}.\:{x}<−\mathrm{1}\:{or}\:{x}>\mathrm{3} \\ $$

Question Number 65929    Answers: 1   Comments: 2

Question Number 65926    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−x) ln(1+x^2 )dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 65925    Answers: 0   Comments: 3

calculate ∫_0 ^1 e^(−2t) ln(1−t)dt

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\mathrm{2}{t}} {ln}\left(\mathrm{1}−{t}\right){dt} \\ $$

Question Number 65924    Answers: 0   Comments: 1

calculate ∫_(−(π/6)) ^(π/6) (x/(sinx))dx

$${calculate}\:\int_{−\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \:\frac{{x}}{{sinx}}{dx}\: \\ $$

Question Number 65923    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((1−cos(2x^2 ))/x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 65922    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(3x^2 ))/x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 65920    Answers: 1   Comments: 1

fnd ∫ (dx/(x+2−(√(3+x^2 ))))

$${fnd}\:\int\:\frac{{dx}}{{x}+\mathrm{2}−\sqrt{\mathrm{3}+{x}^{\mathrm{2}} }} \\ $$

Question Number 65919    Answers: 1   Comments: 1

find ∫ (dx/(x(√(x+1)) +(x+1)(√x))) 2) calculate ∫_1 ^(√3) (dx/(x(√(x+1)) +(x+1)(√x)))

$${find}\:\:\int\:\:\frac{{dx}}{{x}\sqrt{{x}+\mathrm{1}}\:+\left({x}+\mathrm{1}\right)\sqrt{{x}}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\:\frac{{dx}}{{x}\sqrt{{x}+\mathrm{1}}\:+\left({x}+\mathrm{1}\right)\sqrt{{x}}} \\ $$

Question Number 65918    Answers: 1   Comments: 1

simplify A_n =(2+i(√5))^n +(2−i(√5))^n and B_n =(2+i(√5))^n −(2−i(√5))^n

$${simplify}\:{A}_{{n}} =\left(\mathrm{2}+{i}\sqrt{\mathrm{5}}\right)^{{n}} \:+\left(\mathrm{2}−{i}\sqrt{\mathrm{5}}\right)^{{n}} \\ $$$${and}\:{B}_{{n}} =\left(\mathrm{2}+{i}\sqrt{\mathrm{5}}\right)^{{n}} −\left(\mathrm{2}−{i}\sqrt{\mathrm{5}}\right)^{{n}} \\ $$

Question Number 65917    Answers: 0   Comments: 0

prove that 1 +(1/2) +(1/3) +...+(1/n) =(p_n /(2q_n )) with p_n odd

$${prove}\:{that}\:\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}}\:=\frac{{p}_{{n}} }{\mathrm{2}{q}_{{n}} }\:\:{with}\:{p}_{{n}} {odd} \\ $$

Question Number 65916    Answers: 0   Comments: 0

solve inside N and Z the equation (1/x)+(1/y)=(1/(15))

$${solve}\:{inside}\:{N}\:{and}\:{Z}\:\:{the}\:{equation}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{\mathrm{15}} \\ $$

Question Number 65915    Answers: 0   Comments: 0

let p prime not 0 and n integr /1≤n<p prove that (((p−1)(p−2)....(p−n))/(n!)) −(−1)^n is integr and divided by p

$${let}\:{p}\:{prime}\:{not}\:\mathrm{0}\:\:{and}\:{n}\:{integr}\:/\mathrm{1}\leqslant{n}<{p}\:{prove}\:{that} \\ $$$$\frac{\left({p}−\mathrm{1}\right)\left({p}−\mathrm{2}\right)....\left({p}−{n}\right)}{{n}!}\:−\left(−\mathrm{1}\right)^{{n}} \:\:{is}\:{integr}\:{and}\:{divided}\:{by}\:{p} \\ $$

Question Number 65914    Answers: 0   Comments: 0

x^n +y^n =z^n make n the subject of formula please help

$${x}^{{n}} +{y}^{{n}} ={z}^{{n}} \:\: \\ $$$${make}\:{n}\:{the}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$${please}\:{help} \\ $$

Question Number 65911    Answers: 0   Comments: 1

Question Number 65901    Answers: 1   Comments: 0

Question Number 65884    Answers: 0   Comments: 3

Question Number 65878    Answers: 0   Comments: 5

Calculate lim_(a−>∞) ∫_0 ^∞ (dx/(1+x^a ))

$$\:\:{Calculate}\:\:\:{lim}_{{a}−>\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{{a}} }\: \\ $$

Question Number 65871    Answers: 0   Comments: 0

To: sirAjfour,sir:mrW1, sir:MJS by considering my comment on: Q#14535 and sir Ajfour and mrW1 answer′s to Q#62839,I think now we can solve Q#14535 .if you have time please try it.I know there is a relation between this questions.but can′t find it. kindly try it.thanks alot sir.

$$\mathrm{To}:\:\mathrm{sirAjfour},\mathrm{sir}:\mathrm{mrW1},\:\mathrm{sir}:\mathrm{MJS} \\ $$$$\mathrm{by}\:\mathrm{considering}\:\mathrm{my}\:\mathrm{comment}\:\mathrm{on}: \\ $$$$\mathrm{Q}#\mathrm{14535}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{Ajfour}\:\mathrm{and}\:\mathrm{mrW1} \\ $$$$\mathrm{answer}'\mathrm{s}\:\mathrm{to}\:\mathrm{Q}#\mathrm{62839},\mathrm{I}\:\mathrm{think}\:\mathrm{now}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{solve}\:\mathrm{Q}#\mathrm{14535}\:.\mathrm{if}\:\mathrm{you}\:\mathrm{have}\:\mathrm{time} \\ $$$$\mathrm{please}\:\mathrm{try}\:\mathrm{it}.\mathrm{I}\:\mathrm{know}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{relation} \\ $$$$\mathrm{between}\:\mathrm{this}\:\mathrm{questions}.\mathrm{but}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}. \\ $$$$\mathrm{kindly}\:\mathrm{try}\:\mathrm{it}.\mathrm{thanks}\:\mathrm{alot}\:\mathrm{sir}. \\ $$

Question Number 65869    Answers: 1   Comments: 1

∫((2x^2 −3x+4)/(4x^3 +5)) dx

$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}}{\mathrm{4}{x}^{\mathrm{3}} +\mathrm{5}}\:{dx} \\ $$

Question Number 65868    Answers: 0   Comments: 2

Question Number 65866    Answers: 0   Comments: 5

Question Number 65859    Answers: 1   Comments: 0

x^4 +5x^2 +20x+104=0 solve for x.

$${x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{20}{x}+\mathrm{104}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 65858    Answers: 0   Comments: 3

  Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450      Pg 1451      Pg 1452   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com