Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1448

Question Number 59575    Answers: 1   Comments: 0

find ∫ ((sin(2x))/(1+cos^2 x))dx

$${find}\:\int\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 59562    Answers: 1   Comments: 0

Derive the equations of motion 1)Vu+at

$$\left.\mathrm{Derive}\:\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{1}\right)\mathrm{Vu}+\mathrm{at} \\ $$

Question Number 59552    Answers: 1   Comments: 0

(1/4)+((1/4)+(1/8))

$$\frac{\mathrm{1}}{\mathrm{4}}+\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\right) \\ $$

Question Number 59551    Answers: 1   Comments: 0

1.8×1.6

$$\mathrm{1}.\mathrm{8}×\mathrm{1}.\mathrm{6} \\ $$

Question Number 59550    Answers: 1   Comments: 0

9+(5×4+5^3 )

$$\mathrm{9}+\left(\mathrm{5}×\mathrm{4}+\mathrm{5}^{\mathrm{3}} \right) \\ $$

Question Number 59549    Answers: 2   Comments: 0

(1/5)×i i=7

$$\frac{\mathrm{1}}{\mathrm{5}}×\mathrm{i}\:\:\mathrm{i}=\mathrm{7} \\ $$

Question Number 59547    Answers: 1   Comments: 0

4+t×c t=3 c=6

$$\mathrm{4}+\mathrm{t}×\mathrm{c}\:\mathrm{t}=\mathrm{3}\:\mathrm{c}=\mathrm{6} \\ $$

Question Number 59542    Answers: 0   Comments: 4

lim_(x→0) ((ln(cosx))/x^2 ) I have a doubt

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{ln}\left(\mathrm{cosx}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$${I}\:{have}\:{a}\:{doubt} \\ $$

Question Number 59563    Answers: 2   Comments: 1

Question Number 59528    Answers: 0   Comments: 5

let f(x) =∫_0 ^1 (dt/(1+xch(t))) with x real 1) determine a explicit form of f(x) 2)find also g(x)=∫_0 ^1 (dt/((1+xch(t))^2 )) 3) calculate ∫_0 ^1 (dt/(1+3ch(t))) and ∫_0 ^1 (dt/((1+3ch(t))^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+{xch}\left({t}\right)}\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left(\mathrm{1}+{xch}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{ch}\left({t}\right)}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+\mathrm{3}{ch}\left({t}\right)\right)^{\mathrm{2}} } \\ $$

Question Number 59526    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(2sh(x)+3ch(x)))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{2}{sh}\left({x}\right)+\mathrm{3}{ch}\left({x}\right)} \\ $$

Question Number 59518    Answers: 1   Comments: 1

if x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 calculste x^5 +y^5 +z^5

$${if}\:\:{x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} \:+{y}^{\mathrm{3}} \:+{z}^{\mathrm{3}} =\mathrm{3}\:\:{calculste} \\ $$$${x}^{\mathrm{5}} +{y}^{\mathrm{5}} \:+{z}^{\mathrm{5}} \\ $$

Question Number 59516    Answers: 1   Comments: 0

Question Number 59515    Answers: 0   Comments: 0

Question Number 59509    Answers: 2   Comments: 0

Question Number 59506    Answers: 1   Comments: 4

Question Number 59505    Answers: 2   Comments: 0

Two particles P and Q move towards each other along a straight line MN, 51 meters long. P starts fromM with velocity 5 ms^(−1) and constant acceleration of 1 ms^(−2) . Q starts from N at the same time with velocity 6 ms^(−1) and at a constant acceleration of 3 ms^(−2) . Find the time when the: (a) particles are 30 metres apart; (b) particles meet; (c) velocity of P is (3/4) os the velocity of Q.

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}\:\mathrm{move}\:\mathrm{towards}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:{MN},\:\mathrm{51}\:\mathrm{meters} \\ $$$$\mathrm{long}.\:\mathrm{P}\:\mathrm{starts}\:\mathrm{from}{M}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}\:\mathrm{ms}^{−\mathrm{2}} .\:\mathrm{Q}\:\mathrm{starts} \\ $$$$\mathrm{from}\:\mathrm{N}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{6}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{3}\:\mathrm{ms}^{−\mathrm{2}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{the}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{particles}\:\mathrm{are}\:\mathrm{30}\:\mathrm{metres}\:\mathrm{apart}; \\ $$$$\left(\mathrm{b}\right)\:\mathrm{particles}\:\mathrm{meet}; \\ $$$$\left(\mathrm{c}\right)\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{P}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{os}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{Q}. \\ $$

Question Number 59503    Answers: 0   Comments: 1

∫_a ^b (e^(−x^2 ) )dx=?

$$\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}\left(\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } \right)\boldsymbol{{dx}}=? \\ $$

Question Number 59499    Answers: 1   Comments: 3

Question Number 59483    Answers: 0   Comments: 0

Question Number 59482    Answers: 0   Comments: 0

Question Number 59478    Answers: 2   Comments: 0

x^4 +x^2 +16=0

$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$

Question Number 59474    Answers: 1   Comments: 3

1) ∫_0 ^(10π) ([sec^(−1) x]+[cot^(−1) x] ) dx = ? 2)area bounded by curve y=ln(x) and the lines y=0,y=ln(3) and x=0 is equal to ?

$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left(\left[\mathrm{sec}^{−\mathrm{1}} {x}\right]+\left[\mathrm{co}{t}^{−\mathrm{1}} {x}\right]\:\right)\:{dx}\:=\:? \\ $$$$\left.\mathrm{2}\right){area}\:{bounded}\:{by}\:{curve}\:{y}={ln}\left({x}\right)\:{and} \\ $$$${the}\:{lines}\:{y}=\mathrm{0},{y}={ln}\left(\mathrm{3}\right)\:{and}\:{x}=\mathrm{0}\:{is} \\ $$$${equal}\:{to}\:? \\ $$

Question Number 59459    Answers: 0   Comments: 1

Question Number 59452    Answers: 0   Comments: 2

Would anyone like to do a whatsapp group of differential calculus, integral, vector, geometry vector and analytics?

$$\mathrm{Would}\:\mathrm{anyone}\:\mathrm{like}\:\mathrm{to}\:\mathrm{do}\:\mathrm{a}\:\mathrm{whatsapp} \\ $$$$\mathrm{group}\:\mathrm{of}\:\mathrm{differential}\:\mathrm{calculus}, \\ $$$$\mathrm{integral},\:\mathrm{vector},\:\mathrm{geometry}\:\mathrm{vector} \\ $$$$\mathrm{and}\:\mathrm{analytics}? \\ $$

Question Number 59442    Answers: 1   Comments: 2

Solve the system xy + 3x + 2y = − 6 ..... (i) yx + y + 3z = − 3 ..... (ii) zx + 2z + x = 2 ..... (iii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{xy}\:+\:\mathrm{3x}\:+\:\mathrm{2y}\:\:=\:−\:\mathrm{6}\:\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{yx}\:+\:\mathrm{y}\:+\:\mathrm{3z}\:\:\:=\:−\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{zx}\:+\:\mathrm{2z}\:+\:\mathrm{x}\:\:\:=\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{iii}\right) \\ $$

  Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450      Pg 1451      Pg 1452   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com