Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1448
Question Number 66225 Answers: 1 Comments: 2
$${Given}\:{that}\:\:\:\:\:{f}\left({x}\right)=\begin{cases}{−{x}\:+\:\mathrm{1},\:\:{x}\leqslant\:\mathrm{3}_{} }\\{{kx}\:−\mathrm{8},\:\:\:\:{x}\:>\mathrm{3}}\end{cases} \\ $$$${is}\:{continuous}\:{then}\:\:{f}\left(\mathrm{5}\right)\:=\: \\ $$$${A}\:\:\:\mathrm{2} \\ $$$${B}\:\:\:\mathrm{0} \\ $$$${C}\:\:−\mathrm{2} \\ $$$${D}\:\:−\mathrm{1} \\ $$$$ \\ $$
Question Number 66216 Answers: 1 Comments: 2
$$\mid{a}\:\mid\:=\:\mathrm{3}\:,\mid{b}\mid=\:\mathrm{5}\:,\:{a}.{b}\:=−\mathrm{14} \\ $$$$\:\:\mid{a}\:−\:{b}\mid\:=\:? \\ $$
Question Number 66816 Answers: 0 Comments: 3
$${let}\:{x}>\mathrm{0}\:{and}\:{f}\left({x}\right)=\int_{\mathrm{1}} ^{\mathrm{2}} \left({t}+\mathrm{1}\right)\sqrt{{t}^{\mathrm{2}} −\mathrm{2}{xt}−\mathrm{1}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}^{\mathrm{2}} \:+{t}}{\sqrt{{t}^{\mathrm{2}} −\mathrm{2}{xt}−\mathrm{1}}}{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{integrals}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \left({t}+\mathrm{1}\right)\sqrt{{t}^{\mathrm{2}} −{t}−\mathrm{1}}{dt} \\ $$$${and}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{t}^{\mathrm{2}\:} +{t}}{\sqrt{{t}^{\mathrm{2}} −{t}−\mathrm{1}}}{dt}\:. \\ $$$$ \\ $$
Question Number 66815 Answers: 2 Comments: 1
$${solve}\:{the}\:{congruence}\:{equation}\: \\ $$$$\:\:\mathrm{6}{x}\:\equiv\:\mathrm{4}\:\left({mod}\:\mathrm{5}\right)\:\:{i}\:{need}\:{help}\:{please}\:{with}\:{some}\:{explanations} \\ $$
Question Number 66213 Answers: 0 Comments: 3
$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){dx}\:{and}\:{B}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{{n}} \right){dx} \\ $$$${with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$
Question Number 66211 Answers: 1 Comments: 4
Question Number 66199 Answers: 0 Comments: 3
$${calculate} \\ $$$${cos}\left(\mathrm{79}\right)=? \\ $$
Question Number 66197 Answers: 3 Comments: 3
$$\mathrm{If}\:\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{1},\mathrm{prove}\:\mathrm{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{n}} +\mathrm{x}^{\mathrm{n}−\mathrm{2}} +\mathrm{x}^{\mathrm{n}−\mathrm{4}} =\mathrm{0} \\ $$
Question Number 66194 Answers: 0 Comments: 0
$$\int\frac{{x}^{{a}} }{{bx}^{{n}} +{c}}\:{dx} \\ $$
Question Number 66250 Answers: 1 Comments: 0
Question Number 66185 Answers: 1 Comments: 1
$$\left({e}^{\frac{\mathrm{1}}{{e}}} \right)^{\left({e}^{\frac{\mathrm{1}}{{e}}} \right)^{.\centerdot^{.\left({e}^{\frac{\mathrm{1}}{{e}}} \right)} } } =? \\ $$
Question Number 66183 Answers: 0 Comments: 1
$$\mathrm{why}\:\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({j}^{\mathrm{2}} {x}\right)}{{j}^{\mathrm{2}} }\:\mathrm{can}'\mathrm{t}\:\mathrm{differantial} \\ $$$$\mathrm{anywhere}??\:\:\mathrm{plz}\:\mathrm{ploof}....\mathrm{help} \\ $$
Question Number 66173 Answers: 1 Comments: 0
$${x}^{{x}^{{x}\centerdot^{.^{.{x}} } } } =\mathrm{2} \\ $$$${x}=? \\ $$
Question Number 66172 Answers: 0 Comments: 4
$$ \\ $$$${let}\:{A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:\:\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\frac{{ln}\left({A}_{{n}} \right)}{{n}} \\ $$
Question Number 66171 Answers: 1 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left\{{sin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+\mathrm{2}{sin}\left(\frac{\mathrm{4}}{{n}^{\mathrm{2}} }\right)+....\left({n}−\mathrm{1}\right){sin}\left(\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\right\} \\ $$
Question Number 66170 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left({x}^{\mathrm{3}} \right){dx} \\ $$
Question Number 66169 Answers: 0 Comments: 1
$${find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\left({fresnel}\:{integrals}\right) \\ $$$${by}\:{using}\:\Gamma\left({z}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{z}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\: \\ $$
Question Number 66168 Answers: 0 Comments: 0
$${prove}\:{without}\:{calculus}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 66163 Answers: 1 Comments: 0
Question Number 66162 Answers: 3 Comments: 3
Question Number 66161 Answers: 1 Comments: 0
Question Number 66160 Answers: 0 Comments: 0
Question Number 66150 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {sin}\left({x}^{\mathrm{3}} \right){dx}\: \\ $$
Question Number 66149 Answers: 2 Comments: 0
$${f}\left({x}\right)\:=\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}\: \\ $$$${show}\:{that}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{roots}\:{between} \\ $$$$\mathrm{1}\:{and}\:\mathrm{2} \\ $$
Question Number 66140 Answers: 0 Comments: 0
$$\mathrm{1}.\boldsymbol{{Show}}\:\boldsymbol{{that}}:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{sin}\:\mathrm{2}{x}\right)\mathrm{sin}\:{x}\:{dx}=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {f}\left(\mathrm{cos}\:\mathrm{2}{x}\right)\mathrm{cos}\:{x}\:{dx}. \\ $$$$\mathrm{2}.\boldsymbol{{If}}\:\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)=\frac{\boldsymbol{{d}}}{\boldsymbol{{dz}}}\left\{\mathrm{5}^{\mid\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)\mid} \right\}\:\:\boldsymbol{{then}}\:\boldsymbol{{what}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{f}}'\left(\boldsymbol{{e}}\right)? \\ $$
Question Number 66126 Answers: 1 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{find}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{1}\:+\:{n}^{\mathrm{2}} \:+\:{n}^{\mathrm{4}} \:+\:{n}^{\mathrm{6}} \:+\:{n}^{\mathrm{8}} \:+\:...\:+\:{n}^{\mathrm{2}{k}} \:+\:... \\ $$$$\mathrm{where}\:{n},{k}\:\in\:\mathbb{Z}^{+} \: \\ $$
Pg 1443 Pg 1444 Pg 1445 Pg 1446 Pg 1447 Pg 1448 Pg 1449 Pg 1450 Pg 1451 Pg 1452
Terms of Service
Privacy Policy
Contact: info@tinkutara.com