Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1448

Question Number 66543    Answers: 2   Comments: 1

3^x =3x x=?

$$\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{3}\boldsymbol{{x}} \\ $$$$\: \\ $$$$\:\boldsymbol{{x}}=? \\ $$

Question Number 66540    Answers: 0   Comments: 0

graph the function r^2 =cos(2θ) and find the area?

$${graph}\:{the}\:{function}\:{r}^{\mathrm{2}} ={cos}\left(\mathrm{2}\theta\right)\:{and}\:{find}\:{the}\:{area}? \\ $$

Question Number 66536    Answers: 0   Comments: 0

∫ln^(10) (x) sin^7 (x) dx

$$\int{ln}^{\mathrm{10}} \left({x}\right)\:{sin}^{\mathrm{7}} \left({x}\right)\:{dx} \\ $$

Question Number 66527    Answers: 1   Comments: 1

Question Number 66522    Answers: 3   Comments: 0

Question Number 66520    Answers: 0   Comments: 1

find the length r=2/1−cosθ if θ between pi/2 to pi

$${find}\:{the}\:{length}\:{r}=\mathrm{2}/\mathrm{1}−{cos}\theta\:\:\:\:\:\:\:\:\:{if}\:\theta\:{between}\:{pi}/\mathrm{2}\:{to}\:{pi} \\ $$

Question Number 66518    Answers: 0   Comments: 2

Question Number 66517    Answers: 1   Comments: 1

find the area cos(2θ)

$${find}\:{the}\:{area}\:{cos}\left(\mathrm{2}\theta\right) \\ $$

Question Number 66513    Answers: 1   Comments: 4

when finding ∫_0 ^2 (2x +4)^5 dx must we change limits?

$${when}\:{finding}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{2}{x}\:+\mathrm{4}\right)^{\mathrm{5}} {dx}\: \\ $$$${must}\:{we}\:{change}\:{limits}? \\ $$

Question Number 66508    Answers: 0   Comments: 3

Question Number 66502    Answers: 1   Comments: 0

find the area about cos(2θ)

$${find}\:{the}\:{area}\:{about}\:{cos}\left(\mathrm{2}\theta\right) \\ $$

Question Number 66498    Answers: 1   Comments: 3

Question Number 66497    Answers: 1   Comments: 0

Question Number 66489    Answers: 3   Comments: 0

Question Number 66483    Answers: 0   Comments: 4

calculate Σ_(k=2) ^∞ (((−1)^k )/k) ζ(k) if ζ(s)=Σ_(n=1) ^∞ (1/n^s )

$$\:{calculate}\:\:\:\:\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\zeta\left({k}\right)\:\:\:\:\:\:\:{if}\:\:\:\:\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{{n}^{{s}} }\: \\ $$

Question Number 66478    Answers: 0   Comments: 2

lim_(x→2) [((log_x (2)−1)/(log_2 ((1/x))+1))]=?

$$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\left[\frac{\boldsymbol{{log}}_{\boldsymbol{{x}}} \left(\mathrm{2}\right)−\mathrm{1}}{\boldsymbol{{log}}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)+\mathrm{1}}\right]=? \\ $$$$\: \\ $$

Question Number 66476    Answers: 0   Comments: 1

Question Number 66474    Answers: 0   Comments: 2

∫e^x^2 dx=?

$$\int{e}^{{x}^{\mathrm{2}} } {dx}=? \\ $$

Question Number 66472    Answers: 1   Comments: 0

{ (((x)^(1/(√6)) +(y)^(1/(√5)) =11)),((((y)^(1/(√5)) /(x)^(1/(√6)) )=1(1/5))) :} Qual e^ o par ordenado na forma a^(√p) e b^(√q) que satisfaz o sistema como possivel e determinado?

$$\begin{cases}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}=\mathrm{11}}\\{\frac{\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}}=\mathrm{1}\frac{\mathrm{1}}{\mathrm{5}}}\end{cases} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Qual}}\:\:\acute {\boldsymbol{\mathrm{e}}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{par}}\:\:\boldsymbol{\mathrm{ordenado}}\:\:\boldsymbol{\mathrm{na}}\:\:\boldsymbol{\mathrm{forma}}\:\:\boldsymbol{\mathrm{a}}^{\sqrt{\boldsymbol{\mathrm{p}}}} \:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{b}}^{\sqrt{\boldsymbol{\mathrm{q}}}} \\ $$$$\:\boldsymbol{\mathrm{que}}\:\:\boldsymbol{\mathrm{satisfaz}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{sistema}}\:\:\boldsymbol{\mathrm{como}}\:\:\boldsymbol{\mathrm{possivel}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{determinado}}? \\ $$

Question Number 66470    Answers: 0   Comments: 5

calculate ∫_0 ^∞ (dx/((x^n +8)^3 )) withn>1

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{8}\right)^{\mathrm{3}} }\:\:{withn}>\mathrm{1} \\ $$

Question Number 66469    Answers: 0   Comments: 1

Question Number 66468    Answers: 0   Comments: 1

calculate I_n = ∫_0 ^∞ (dx/((x^n +3)^2 )) with n>1

$${calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:\:{with}\:{n}>\mathrm{1} \\ $$

Question Number 66467    Answers: 0   Comments: 1

calculate A_n =∫_0 ^∞ (dx/((n+x^n )^2 )) with n>1

$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({n}+{x}^{{n}} \right)^{\mathrm{2}} }\:\:\:{with}\:{n}>\mathrm{1} \\ $$

Question Number 66466    Answers: 0   Comments: 1

find f(a,b) =∫_0 ^∞ ((cos(ax)cos(bx))/((x^2 +a^2 )(x^2 +b^2 )))dx with a>0 and b>0 2)calculate ∫_0 ^∞ ((cos(x)cos(2x))/((x^2 +1)(x^2 +4)))dx

$${find}\:\:{f}\left({a},{b}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({ax}\right){cos}\left({bx}\right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)}{dx}\:\:{with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({x}\right){cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)}{dx} \\ $$

Question Number 66465    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (dx/((x^2 +2i)( x^2 +4j))) with i=e^((iπ)/2) and j=e^(i((2π)/3))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{i}\right)\left(\:{x}^{\mathrm{2}} \:+\mathrm{4}{j}\right)}\:\:\:{with}\:{i}={e}^{\frac{{i}\pi}{\mathrm{2}}} \:{and}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$

Question Number 66464    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (dx/((x^2 +3)(x^2 +8)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$

  Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450      Pg 1451      Pg 1452   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com