Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1448
Question Number 66061 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{sinx}}{\mathrm{1}+{te}^{−{x}^{\mathrm{2}} } }{dx}\:\:\:\:{with}\:\mid{t}\mid<\mathrm{1} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 66060 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{{x}+{tant}}\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{aexplicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\left({x}+{tant}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({x}\right){at}\:{form}\:{of}\:{integral} \\ $$$$\left.\mathrm{4}\right){calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\mathrm{2}+{tant}}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\left(\mathrm{2}+{tant}\right)^{\mathrm{2}} } \\ $$
Question Number 66058 Answers: 2 Comments: 5
$${If}\:\:\:\:{x}\:+\:\frac{\mathrm{1}}{{x}}=\mathrm{1} \\ $$$$ \\ $$$${find}\:{out}\:{value}:− \\ $$$$ \\ $$$$\:\:\:\:\frac{{x}^{\mathrm{20}} +{x}^{\mathrm{17}} +{x}^{\mathrm{14}} +{x}^{\mathrm{11}} }{{x}^{\mathrm{17}} +{x}^{\mathrm{14}} +{x}^{\mathrm{11}} +{x}^{\mathrm{8}} }\:\:\:\:=\:\:\:\:? \\ $$
Question Number 66055 Answers: 1 Comments: 1
Question Number 66048 Answers: 0 Comments: 1
$$\int\frac{{x}}{\sqrt{{ln}\left(\mathrm{1}/{x}\right)}}\:{dx} \\ $$
Question Number 66046 Answers: 0 Comments: 2
$${find}\:\frac{{dy}}{{dx}}\:{if}\:{y}={x}^{{x}^{{x}} } \\ $$$${help}\:{pls} \\ $$
Question Number 66044 Answers: 1 Comments: 0
Question Number 66036 Answers: 1 Comments: 0
Question Number 66032 Answers: 0 Comments: 2
$${simplify}\:\:{w}_{{n}} =\left(\mathrm{1}+{in}\right)^{{n}} −\left(\mathrm{1}−{in}\right)^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$
Question Number 66019 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\infty} {{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{2}}{{x}}\right)^{{x}} \:= \\ $$
Question Number 66018 Answers: 1 Comments: 1
$${prove}\:{by}\:{mathematical}\:{induction}\:{that}\: \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\left({r}\:+\:\mathrm{1}\right)\:=\:\frac{{n}}{\mathrm{3}}\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{2}\right) \\ $$
Question Number 66017 Answers: 0 Comments: 0
$${show}\:{that}\:{the}\:{equation}\:{xe}^{{x}} =\mathrm{1}\:{has}\:{a}\:{root}\:{between}\:\mathrm{0}.\mathrm{5}\:{and}\:\mathrm{0}.\mathrm{6}\:{starting} \\ $$$${with}\:\mathrm{0}.\mathrm{55}\:{as}\:{a}\:{first}\:{approximate}. \\ $$
Question Number 66016 Answers: 1 Comments: 6
$${Evaluate}\:\:\: \\ $$$${a}.\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\left({lnx}\right)^{\mathrm{2}} {dx} \\ $$$${b}.\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{3}} {xdx} \\ $$
Question Number 66010 Answers: 0 Comments: 1
$${Using}\:\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}!}={e}\:,\:{prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} ={e} \\ $$
Question Number 66005 Answers: 0 Comments: 0
$${solve}\:\:\:{x}^{\mathrm{2}} {y}^{''} \:+{xy}^{'} −\mathrm{3}{y}\:=\mathrm{4}{e}^{−{x}} \\ $$
Question Number 66004 Answers: 1 Comments: 0
$${x}^{{x}^{{x}^{\iddots} } } =\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x} \\ $$
Question Number 65992 Answers: 1 Comments: 1
$${x}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{1}!}\:+\:\frac{\mathrm{1}}{\mathrm{4}\centerdot\mathrm{2}!}\:+\:\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{3}!}\:+\:\ldots\:+\:\frac{\mathrm{1}}{\mathrm{1002}\centerdot\mathrm{1000}!} \\ $$$${x}\centerdot\mathrm{1000}!\:\:=\:\:? \\ $$
Question Number 65988 Answers: 3 Comments: 1
$$\int{dx}/{x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$
Question Number 66041 Answers: 0 Comments: 0
Question Number 65983 Answers: 1 Comments: 1
$$\:{Simplify}\: \\ $$$$\:\:\:\left(\mathrm{1}+\:\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{7}} \:−\:\left(\mathrm{1}\:+\mathrm{2}{i}\right)^{\mathrm{7}} \\ $$
Question Number 65972 Answers: 1 Comments: 0
$$\mathrm{If}\:\frac{\mathrm{log}_{\mathrm{2}} \:{a}}{\mathrm{log}_{\mathrm{3}} \:{b}}={m}\:\mathrm{and}\:\frac{\mathrm{log}_{\mathrm{3}} \:{a}}{\mathrm{log}_{\mathrm{2}} \:{b}}={n} \\ $$$${a}>\mathrm{1}\:\mathrm{and}\:{b}>\mathrm{1} \\ $$$$\mathrm{then}\:\frac{{m}}{{n}}=... \\ $$$${a}.\mathrm{log}_{\mathrm{2}} \:\mathrm{3} \\ $$$${b}.\:\mathrm{log}_{\mathrm{3}} \:\mathrm{2} \\ $$$${c}.\:\mathrm{log}_{\mathrm{4}} \:\mathrm{9} \\ $$$${d}.\:\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} \\ $$$${e}.\:\left(\mathrm{log}_{\mathrm{3}} \:\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 65971 Answers: 2 Comments: 0
$$\mathrm{If}\:\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{12}\:\mathrm{then}\:\mathrm{log}\left(\:^{\mathrm{3}} \sqrt{\frac{{b}}{{a}}}\right)=.. \\ $$$${a}.\:−\mathrm{2} \\ $$$${b}.\:−\mathrm{1} \\ $$$${c}.\:\mathrm{0} \\ $$$${d}.\:\mathrm{1} \\ $$$${e}.\:\mathrm{2} \\ $$
Question Number 65970 Answers: 1 Comments: 0
$$\mathrm{log}_{\mathrm{5}} \sqrt{\mathrm{27}}×\mathrm{log}_{\mathrm{9}} \mathrm{125}+\mathrm{log}_{\mathrm{16}} \mathrm{12}=... \\ $$$${a}.\:\frac{\mathrm{61}}{\mathrm{36}} \\ $$$${b}.\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${c}.\:\frac{\mathrm{61}}{\mathrm{20}} \\ $$$${d}.\:\frac{\mathrm{41}}{\mathrm{12}} \\ $$$${e}.\:\frac{\mathrm{7}}{\mathrm{2}} \\ $$
Question Number 65961 Answers: 1 Comments: 0
$$\mathrm{Let}\:\frac{{d}}{{dx}}\left({F}\left({x}\right)\right)\:=\:\frac{{e}^{\mathrm{sin}\:{x}} }{{x}}\:,\:{x}>\mathrm{0}. \\ $$$$\mathrm{If}\:\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}\:{e}^{\mathrm{sin}\:{x}^{\mathrm{2}} } }{{x}}\:{dx}\:=\:{F}\left({k}\right)−{F}\left(\mathrm{1}\right),\:\mathrm{then}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\:{k}\:\:\mathrm{is} \\ $$
Question Number 65951 Answers: 0 Comments: 1
Question Number 65950 Answers: 4 Comments: 0
$$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{tan}\:^{\mathrm{3}} {xdx}\:=\:? \\ $$
Pg 1443 Pg 1444 Pg 1445 Pg 1446 Pg 1447 Pg 1448 Pg 1449 Pg 1450 Pg 1451 Pg 1452
Terms of Service
Privacy Policy
Contact: info@tinkutara.com