Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1446

Question Number 66340    Answers: 0   Comments: 1

find ∫_0 ^2 (√(x^3 (2−x)))dx

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \left(\mathrm{2}−{x}\right)}{dx} \\ $$

Question Number 66339    Answers: 0   Comments: 1

calculate ∫_(1/2) ^1 (dx/((√(4x^2 −1))+(√(4x^2 +1))))

$${calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$

Question Number 66338    Answers: 0   Comments: 1

find ∫_(1/2) ^(5/4) ((x^3 dx)/(√(2+x−x^2 )))

$${find}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{5}}{\mathrm{4}}} \:\:\:\frac{{x}^{\mathrm{3}} {dx}}{\sqrt{\mathrm{2}+{x}−{x}^{\mathrm{2}} }} \\ $$

Question Number 66337    Answers: 0   Comments: 2

calculate ∫_(−7) ^(−3) (((x−1)dx)/(√(x^2 +2x−3)))

$${calculate}\:\int_{−\mathrm{7}} ^{−\mathrm{3}} \:\:\frac{\left({x}−\mathrm{1}\right){dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{3}}} \\ $$

Question Number 66336    Answers: 0   Comments: 0

calculate ∫_0 ^(π/4) ((tanx)/((√2)cosx +2sin^2 x))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tanx}}{\sqrt{\mathrm{2}}{cosx}\:+\mathrm{2}{sin}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 66335    Answers: 0   Comments: 1

find ∫_(−(π/6)) ^(π/6) ((1+tanx)/(1+sin(2x)))dx

$${find}\:\:\int_{−\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \:\frac{\mathrm{1}+{tanx}}{\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Question Number 66334    Answers: 0   Comments: 2

let I =∫_0 ^(π/4) e^(−2t) cos^4 t dt and J=∫_0 ^(π/4) e^(−2t) sin^4 tdt 1)calculate I+J and I−J 2) find the value of I and J.

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{e}^{−\mathrm{2}{t}} \:{cos}^{\mathrm{4}} {t}\:{dt}\:{and}\:{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{e}^{−\mathrm{2}{t}} \:{sin}^{\mathrm{4}} {tdt} \\ $$$$\left.\mathrm{1}\right){calculate}\:\:{I}+{J}\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J}. \\ $$

Question Number 66332    Answers: 0   Comments: 0

let A_n =∫_0 ^1 x^n (√(1−x))dx 1)calculate A_0 and A_1 2)prove that ∀n∈N^★ (3+2n)A_n =2nA_(n−1) 3) find A_n interms of n.

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}}{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}_{\mathrm{0}} \:{and}\:{A}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{n}\in{N}^{\bigstar} \:\:\:\:\left(\mathrm{3}+\mathrm{2}{n}\right){A}_{{n}} =\mathrm{2}{nA}_{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{A}_{{n}} \:{interms}\:{of}\:{n}. \\ $$

Question Number 66330    Answers: 0   Comments: 1

let I_n =∫_0 ^1 x^n e^(−x) dx with n integr natural 1) calculate I_0 , I_1 and I_2 2)find arelation between I_n and I_n 3) find I_n interms of n.

$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} \:{dx}\:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{\mathrm{0}} \:,\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{arelation}\:{between}\:{I}_{{n}} \:{and}\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{I}_{{n}} \:{interms}\:{of}\:{n}. \\ $$

Question Number 66328    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dt/((1+t^2 )^3 ))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$

Question Number 66326    Answers: 0   Comments: 4

calculate ∫_0 ^1 ((x^4 +1)/(x^6 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{4}} \:+\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx} \\ $$

Question Number 66324    Answers: 0   Comments: 1

find nature of the serie Σ_(n=1) ^∞ (((−1)^(n+1) )/(2^n +ln(n)))

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}^{{n}} \:+{ln}\left({n}\right)} \\ $$

Question Number 66323    Answers: 0   Comments: 0

find lim_(x→0^+ ) ((x(1+cosx)−2tanx)/(2x−sinx−tanx))

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{{x}\left(\mathrm{1}+{cosx}\right)−\mathrm{2}{tanx}}{\mathrm{2}{x}−{sinx}−{tanx}} \\ $$

Question Number 66322    Answers: 0   Comments: 0

let f(x)=(cosx)^(1/x) ( 1) prove that f(x)∼1−(x/2)+(x^2 /8) ( x→0) (2)ptove that f^′ (x)∼−(2/π) e^(((1/x)−1)ln(cosx)) (x→(π/2))

$${let}\:{f}\left({x}\right)=\left({cosx}\right)^{\frac{\mathrm{1}}{{x}}} \:\left(\:\mathrm{1}\right)\:\:{prove}\:{that}\:{f}\left({x}\right)\sim\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{8}}\:\:\left(\:{x}\rightarrow\mathrm{0}\right) \\ $$$$\left(\mathrm{2}\right){ptove}\:{that}\:{f}^{'} \left({x}\right)\sim−\frac{\mathrm{2}}{\pi}\:{e}^{\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right){ln}\left({cosx}\right)} \:\:\left({x}\rightarrow\frac{\pi}{\mathrm{2}}\right) \\ $$

Question Number 66321    Answers: 0   Comments: 2

find lim_(x→0^+ ) (tan((π/(2+x))))^x

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\left({tan}\left(\frac{\pi}{\mathrm{2}+{x}}\right)\right)^{{x}} \\ $$

Question Number 66319    Answers: 0   Comments: 0

find lim_(x→+∞) (((a^(1/x) +2b^(1/x) +3c^(1/x) )/6))^x

$${find}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\left(\frac{{a}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{2}{b}^{\frac{\mathrm{1}}{{x}}} +\mathrm{3}{c}^{\frac{\mathrm{1}}{{x}}} }{\mathrm{6}}\right)^{{x}} \\ $$

Question Number 66318    Answers: 0   Comments: 4

find lim_(x→0) (((1+x)/(1−x)))^(1/(sinx))

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{\frac{\mathrm{1}}{{sinx}}} \\ $$

Question Number 66317    Answers: 0   Comments: 2

calculate lim_(x→0) ((ln(cosx))/(1−cos(2x)))

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{ln}\left({cosx}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 66316    Answers: 1   Comments: 1

lim_(x→(π/2)) ((ln(sin^2 x))/(((π/2)−x)^2 ))

$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left({sin}^{\mathrm{2}} {x}\right)}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Question Number 66325    Answers: 0   Comments: 3

calculate ∫_0 ^(π/4) cos^4 x sin^2 x dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{4}} {x}\:{sin}^{\mathrm{2}} {x}\:{dx} \\ $$

Question Number 66308    Answers: 0   Comments: 1

find ∫ (dx/((x+3)(√(−x^2 −4x))))

$${find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{3}\right)\sqrt{−{x}^{\mathrm{2}} −\mathrm{4}{x}}} \\ $$

Question Number 66310    Answers: 1   Comments: 1

Question Number 66309    Answers: 0   Comments: 2

calculate ∫ (dx/((x^2 −1)(√(x^2 +2))))

$${calculate}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$

Question Number 66304    Answers: 1   Comments: 0

calculate lim_(x→0) ((ln(x+1+sin(πx)))/(xsin(2x)))

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left({x}+\mathrm{1}+{sin}\left(\pi{x}\right)\right)}{{xsin}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 66302    Answers: 0   Comments: 3

solved the general quintic, despite whatever proof that it cant be solved in a simple way!

$${solved}\:{the}\:{general}\:{quintic}, \\ $$$${despite}\:{whatever}\:{proof}\:{that}\:{it} \\ $$$${cant}\:{be}\:{solved}\:{in}\:{a}\:{simple}\:{way}! \\ $$

Question Number 66293    Answers: 0   Comments: 3

What do we mean by ∫_(−∞) ^(+∞) f(x) dx?

$${What}\:{do}\:{we}\:{mean}\:{by}\:\: \\ $$$$\:\:\int_{−\infty} ^{+\infty} {f}\left({x}\right)\:{dx}? \\ $$

  Pg 1441      Pg 1442      Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com