Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1446

Question Number 65774    Answers: 0   Comments: 0

find A_n = ∫_0 ^(2π) ((sin^2 x)/(sin^2 (((nx)/2))))dx (n>0)

$${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{sin}^{\mathrm{2}} {x}}{{sin}^{\mathrm{2}} \left(\frac{{nx}}{\mathrm{2}}\right)}{dx}\:\:\:\:\left({n}>\mathrm{0}\right) \\ $$

Question Number 65773    Answers: 0   Comments: 2

let f(x) =∫_0 ^1 (dt/(1+x(√(1+t^2 )))) with x>0 1)detemine a explicit form of f(x) 2)find also g(x) =∫_0 ^1 ((√(1+t^2 ))/((1+x(√(1+t^2 )))^2 ))dt 3) find the value of integrals ∫_0 ^1 (dt/(1+2(√(1+t^2 )))) and ∫_0 ^1 (dt/((1+2(√(1+t^2 )))^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{x}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){detemine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\left(\mathrm{1}+{x}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$

Question Number 65771    Answers: 0   Comments: 0

let X_n =∫_0 ^(π/4) sin^n xdx 1) calculate X_0 ,X_1 ,X_2 ,X_3 2) find X_n interms of n 3)find the value of ∫_0 ^(π/4) sin^8 xdx

$${let}\:{X}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{{n}} {xdx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{X}_{\mathrm{0}} \:,{X}_{\mathrm{1}} \:,{X}_{\mathrm{2}} ,{X}_{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{X}_{{n}} {interms}\:{of}\:{n} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{\mathrm{8}} {xdx} \\ $$

Question Number 65770    Answers: 0   Comments: 2

let A_n =∫_0 ^(π/2) cos^n xdx 1) calculate A_0 ,A_2 and A_3 2)calculate A_n interms of n 3) find ∫_0 ^(π/2) cos^8 xdx

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{{n}} {xdx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{0}} ,{A}_{\mathrm{2}} \:{and}\:{A}_{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} {interms}\:{of}\:{n} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{8}} {xdx}\: \\ $$

Question Number 65769    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ (dx/((x^2 −2xcosθ +1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 65768    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (dx/(x^2 −2(cosθ)x +1))

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{2}\left({cos}\theta\right){x}\:+\mathrm{1}} \\ $$

Question Number 65767    Answers: 0   Comments: 0

let f(x) =∫_0 ^(+∞) (dt/(t^4 +x^4 )) with x>0 1) determine a explicit form of f(x) 2) find also g(x) =∫_0 ^∞ (dt/((t^4 +x^4 )^2 )) 3)give f^((n)) (x) at form of integral 4) calculate ∫_0 ^∞ (dt/(t^4 +8)) and ∫_0 ^∞ (dt/((t^4 +8)^2 )) 5) calculate A_n =∫_0 ^∞ (dt/((t^4 +x^4 )^n )) with n integr natural

$${let}\:\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{4}} +{x}^{\mathrm{4}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{4}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integral} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{4}} \:+\mathrm{8}}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{4}} \:+\mathrm{8}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{4}} \:+{x}^{\mathrm{4}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{natural} \\ $$

Question Number 65763    Answers: 0   Comments: 0

Question Number 65753    Answers: 1   Comments: 0

Question Number 65760    Answers: 1   Comments: 2

∫_( 0) ^(π/2) (1/(9 cos x+12 sin x)) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{1}}{\mathrm{9}\:\mathrm{cos}\:{x}+\mathrm{12}\:\mathrm{sin}\:{x}}\:{dx}\:= \\ $$

Question Number 65749    Answers: 1   Comments: 0

Question Number 65745    Answers: 0   Comments: 1

Question Number 65743    Answers: 0   Comments: 1

Question Number 65740    Answers: 0   Comments: 1

Question Number 65739    Answers: 0   Comments: 0

Question Number 65736    Answers: 1   Comments: 2

∫_0 ^1 (√(1 + 4x^2 )) dx = ?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}\:+\:\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} }\:\boldsymbol{{dx}}\:=\:? \\ $$

Question Number 65735    Answers: 0   Comments: 0

show that the maping define by (x y)=Σxy^ is an inner product

$${show}\:{that}\:{the}\:{maping}\:{define}\:{by} \\ $$$$\left({x}\:{y}\right)=\Sigma{x}\bar {{y}} \\ $$$${is}\:{an}\:{inner}\:{product} \\ $$

Question Number 65729    Answers: 0   Comments: 3

Question Number 65726    Answers: 0   Comments: 0

Question Number 65697    Answers: 0   Comments: 3

All posts from MathaPride have been deleted. We will try to be more proactive in future. Sorry about the delay.

$$\mathrm{All}\:\mathrm{posts}\:\mathrm{from}\:\mathrm{MathaPride}\:\mathrm{have}\:\mathrm{been} \\ $$$$\mathrm{deleted}.\:\mathrm{We}\:\mathrm{will}\:\mathrm{try}\:\mathrm{to}\:\mathrm{be}\:\mathrm{more}\:\mathrm{proactive} \\ $$$$\mathrm{in}\:\mathrm{future}.\:\mathrm{Sorry}\:\mathrm{about}\:\mathrm{the}\:\mathrm{delay}. \\ $$

Question Number 65691    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) ((cos^2 x)/(cosx +sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cos}^{\mathrm{2}} {x}}{{cosx}\:+{sinx}}{dx} \\ $$

Question Number 65690    Answers: 0   Comments: 2

calculate ∫_0 ^1 ((ln^2 (x))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 65687    Answers: 0   Comments: 0

∫_0 ^(2π) ((sin(3t))/(5−3cos(t))) dt=0 using Residue theorem

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{sin}\left(\mathrm{3}{t}\right)}{\mathrm{5}−\mathrm{3}{cos}\left({t}\right)}\:{dt}=\mathrm{0}\:\mathrm{using}\:\:\mathrm{Residue}\:\mathrm{theorem} \\ $$

Question Number 65683    Answers: 0   Comments: 0

Question Number 65681    Answers: 1   Comments: 0

∫_0 ^1 (Π_(r=1) ^n (x+r))(Σ_(k=1) ^n (1/(x+k))) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\left({x}+{r}\right)\right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{x}+{k}}\right)\:{dx} \\ $$

Question Number 65680    Answers: 1   Comments: 0

  Pg 1441      Pg 1442      Pg 1443      Pg 1444      Pg 1445      Pg 1446      Pg 1447      Pg 1448      Pg 1449      Pg 1450   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com