Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1440

Question Number 66739    Answers: 1   Comments: 0

find∫(√(dx ))

$${find}\int\sqrt{{dx}\:} \\ $$

Question Number 66734    Answers: 0   Comments: 0

Question Number 66731    Answers: 0   Comments: 1

y=x^2 −3x y=2x find area

$${y}={x}^{\mathrm{2}} −\mathrm{3}{x}\:\:\:\:\:{y}=\mathrm{2}{x}\:{find}\:{area} \\ $$

Question Number 66728    Answers: 2   Comments: 2

∫_1 ^∞ (1/(x(√(x^2 +1))))=?

$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}=? \\ $$

Question Number 66727    Answers: 0   Comments: 0

let U_n =Σ_(k=0) ^n (1/(3k+1)) and H_n =Σ_(k=1) ^n (1/k) calculate U_n interms of H_n

$${let}\:\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:\:\:{and}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${calculate}\:{U}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$

Question Number 66718    Answers: 0   Comments: 3

Question Number 66715    Answers: 0   Comments: 4

if f(x)=((ln (x+(√(1+x^2 ))))/(√(1+x^2 ))) f^(−1) (x)=?

$${if}\:{f}\left({x}\right)=\frac{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 66697    Answers: 1   Comments: 1

Question Number 66696    Answers: 2   Comments: 3

calculate lim_(x→0) ((arctan(1+x^3 )−(π/4))/(xsin(x^2 )))

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\frac{\pi}{\mathrm{4}}}{{xsin}\left({x}^{\mathrm{2}} \right)} \\ $$

Question Number 66695    Answers: 1   Comments: 3

calculate ∫_0 ^∞ ((cos(arctanx))/(4+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 66694    Answers: 0   Comments: 3

let f(a) =∫_(−∞) ^(+∞) (dx/((x^4 +x^2 +a))) with a∈](1/4),+∞[ 1) calculate f(a) 2)find also g(a) =∫_(−∞) ^(+∞) (dx/((x^4 +x^2 +a)^2 )) 3) find the value of integrals ∫_0 ^∞ (dx/((x^4 +x^2 +3))) and ∫_0 ^∞ (dx/((x^4 +x^2 +1)^2 )) 4) developp f at integrserie.

$$\left.{let}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} +{x}^{\mathrm{2}} \:+{a}\right)}\:{with}\:{a}\in\right]\frac{\mathrm{1}}{\mathrm{4}},+\infty\left[\right. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{developp}\:{f}\:{at}\:{integrserie}. \\ $$

Question Number 66693    Answers: 1   Comments: 1

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^3 ))

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 66684    Answers: 1   Comments: 0

Question Number 66683    Answers: 1   Comments: 2

Question Number 66680    Answers: 0   Comments: 2

calculate Σ_(n=1) ^∞ (2^n /(3^n (2n^3 +n^2 −5n +2)))

$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}^{{n}} }{\mathrm{3}^{{n}} \left(\mathrm{2}{n}^{\mathrm{3}} \:+{n}^{\mathrm{2}} −\mathrm{5}{n}\:+\mathrm{2}\right)} \\ $$

Question Number 66670    Answers: 1   Comments: 1

Question Number 66667    Answers: 1   Comments: 3

Question Number 66664    Answers: 0   Comments: 0

Question Number 66656    Answers: 1   Comments: 1

Question Number 66640    Answers: 0   Comments: 6

lim_(x→4) ((((2+x(√x)))^(1/3) −2)/(8−x(√x)))=?

$$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{4}} {\boldsymbol{{lim}}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}+\boldsymbol{{x}}\sqrt{\boldsymbol{{x}}}}−\mathrm{2}}{\mathrm{8}−\boldsymbol{{x}}\sqrt{\boldsymbol{{x}}}}=? \\ $$$$\: \\ $$

Question Number 66629    Answers: 0   Comments: 1

Question Number 66627    Answers: 1   Comments: 4

Question Number 66621    Answers: 0   Comments: 7

Question Number 66620    Answers: 0   Comments: 3

find lim_(n→∞) I_n I_n =∫_0 ^∞ (dx/((1+coth (nx))^n )) ,n≥1

$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{I}_{{n}} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left(\mathrm{1}+\mathrm{coth}\:\left({nx}\right)\right)^{{n}} }\:,{n}\geqslant\mathrm{1} \\ $$$$ \\ $$

Question Number 66619    Answers: 1   Comments: 0

solve for x,y∈R ((√(1+x^2 ))/(ln (x+(√(1+x^2 )))))=((√(1+y^2 ))/(ln (y+(√(1+y^2 )))))

$${solve}\:{for}\:{x},{y}\in{R} \\ $$$$\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$

Question Number 66602    Answers: 2   Comments: 3

  Pg 1435      Pg 1436      Pg 1437      Pg 1438      Pg 1439      Pg 1440      Pg 1441      Pg 1442      Pg 1443      Pg 1444   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com