Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1440

Question Number 67959    Answers: 0   Comments: 1

∫(√(e^y^2 )) dy pleas sir can you help me?

$$\int\sqrt{{e}^{{y}^{\mathrm{2}} } \:\:}\:{dy}\:\:{pleas}\:{sir}\:{can}\:{you}\:{help}\:{me}? \\ $$

Question Number 67958    Answers: 0   Comments: 0

lim_(x→2) (((7^((log_x (256)))^(1/3) −49)/(2^(−(√2^x )) −(1/4)))) ≈ ?

$$\: \\ $$$$\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}} {\boldsymbol{\mathrm{lim}}}\left(\frac{\mathrm{7}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{256}\right)}} −\mathrm{49}}{\mathrm{2}^{−\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} }} −\frac{\mathrm{1}}{\mathrm{4}}}\right)\:\approx\:? \\ $$$$\: \\ $$

Question Number 67948    Answers: 0   Comments: 0

Question Number 67946    Answers: 0   Comments: 3

use Green−Riemann formuler to determined: I=∫∫_D xydxdy D={(x,y)∈R^2 ∣x≥0;y≥;x+y≤1}

$$\mathrm{use}\:\boldsymbol{\mathrm{Green}}−\boldsymbol{\mathrm{Riemann}}\:\boldsymbol{\mathrm{formuler}} \\ $$$$\mathrm{to}\:\mathrm{determined}: \\ $$$$\boldsymbol{\mathrm{I}}=\int\int_{\boldsymbol{\mathrm{D}}} \boldsymbol{\mathrm{xy}}\mathrm{dxdy} \\ $$$$\boldsymbol{\mathrm{D}}=\left\{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{x}\geqslant\mathrm{0};\mathrm{y}\geqslant;\mathrm{x}+{y}\leqslant\mathrm{1}\right\} \\ $$

Question Number 67943    Answers: 0   Comments: 0

Question Number 67942    Answers: 0   Comments: 1

∫e^(y^2 /2) dy

$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} \:\:{dy} \\ $$

Question Number 67939    Answers: 1   Comments: 2

Question Number 67937    Answers: 0   Comments: 1

Question Number 67932    Answers: 1   Comments: 4

let A(θ) = ∫_0 ^∞ (dx/((x^2 +3)(x^4 −e^(iθ) ))) with 0<θ<(π/2) 1) calculate A(θ) interms of θ 2) determine also ∫_0 ^∞ (dx/((x^2 +3)(x^4 −e^(iθ) )^2 ))

$${let}\:{A}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{4}} −{e}^{{i}\theta} \right)}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}\left(\theta\right)\:{interms}\:{of}\:\theta \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{4}} −{e}^{{i}\theta} \right)^{\mathrm{2}} } \\ $$

Question Number 67931    Answers: 0   Comments: 0

let A_n =∫_0 ^(π/4) x^n {1+cosx +cos(2x)}^2 dx find a relation of recurrence betwedn the A_n

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{x}^{{n}} \left\{\mathrm{1}+{cosx}\:+{cos}\left(\mathrm{2}{x}\right)\right\}^{\mathrm{2}} {dx} \\ $$$${find}\:{a}\:{relation}\:{of}\:{recurrence}\:{betwedn}\:{the}\:{A}_{{n}} \\ $$

Question Number 67927    Answers: 0   Comments: 9

Tinku Tara,the developer. Sir, I don′t receive notifications from the forum.Pl fix the problem.

$$\mathrm{Tinku}\:\mathrm{Tara},\mathrm{the}\:\mathrm{developer}. \\ $$$$\mathrm{Sir}, \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{receive}\:\mathrm{notifications}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{forum}.\mathrm{Pl}\:\mathrm{fix}\:\mathrm{the}\:\mathrm{problem}. \\ $$

Question Number 67919    Answers: 0   Comments: 0

Question Number 67918    Answers: 1   Comments: 0

Question Number 68226    Answers: 0   Comments: 1

We are working on problems reported on post 67927. We will update on the resolution as soon as possible.

$$\mathrm{We}\:\mathrm{are}\:\mathrm{working}\:\mathrm{on}\:\mathrm{problems} \\ $$$$\mathrm{reported}\:\mathrm{on}\:\mathrm{post}\:\mathrm{67927}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{update}\:\mathrm{on}\:\mathrm{the}\:\mathrm{resolution} \\ $$$$\mathrm{as}\:\mathrm{soon}\:\mathrm{as}\:\mathrm{possible}. \\ $$

Question Number 67921    Answers: 0   Comments: 0

∫e^(y^2 /2) dy

$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} {dy} \\ $$

Question Number 67920    Answers: 0   Comments: 0

Question Number 67907    Answers: 1   Comments: 1

Question Number 67903    Answers: 2   Comments: 0

Question Number 67902    Answers: 0   Comments: 0

differential equation homogenous. please answer this.with p.s. xydx+2(x^2 +2y^2 )dy=0 x=0 y=1

$${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$

Question Number 67900    Answers: 0   Comments: 0

homogenous differential equation. please answer. y(x^2 +xy−2y^2 )dx+x(3y^2 −xy−x^2 )2y=0 can someone answer this??

$${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$

Question Number 67899    Answers: 1   Comments: 2

homogenous differential equation. (2xy+y^2 )dr−2x^2 dy=0 y=e x=e

$${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$

Question Number 67898    Answers: 0   Comments: 0

differential equation. homogenous. ydx+(2x+3y)dy=0

$$ \\ $$$${differential}\:{equation}. \\ $$$${homogenous}. \\ $$$$ \\ $$$${ydx}+\left(\mathrm{2}{x}+\mathrm{3}{y}\right){dy}=\mathrm{0} \\ $$$$ \\ $$

Question Number 67881    Answers: 1   Comments: 0

find all x,y ∈R such that (x+yi)^(2019) =x−yi

$${find}\:{all}\:{x},{y}\:\in{R}\:{such}\:{that} \\ $$$$\left({x}+{yi}\right)^{\mathrm{2019}} ={x}−{yi} \\ $$

Question Number 67871    Answers: 1   Comments: 1

8=4x x=?

$$\mathrm{8}=\mathrm{4x} \\ $$$$\mathrm{x}=? \\ $$

Question Number 67860    Answers: 1   Comments: 3

Question Number 67852    Answers: 1   Comments: 4

  Pg 1435      Pg 1436      Pg 1437      Pg 1438      Pg 1439      Pg 1440      Pg 1441      Pg 1442      Pg 1443      Pg 1444   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com