let f(x) =arctan(1+e^(−(√(1+x^2 ))) )
calculate f^′ (x) and f^(′′) (x).
1)find lim_(x→+∞) f(x) and lim_(x→−∞) f(x)
3)study the variation of f(x)
4)give the equation of tangent to C_f at A(1,f(1))
let f(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^2 )) with x>0
1) find a explicit form of (x)
2)find also g(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^3 ))
3)find the values of integrals ∫_0 ^∞ (dt/((t^2 +3)^2 )) and ∫_0 ^∞ (dt/((t^2 +3)^3 ))
4) calculate U_θ =∫_0 ^∞ (dt/((t^2 +cos^2 θ)^2 )) with 0<θ<(π/2)
5) find f^((n)) (x) and f^((n)) (0)
6) developp f at integr serie