Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1440

Question Number 67016    Answers: 0   Comments: 0

find ∫ arctan(1+(√x)+(√(x+1)))dx

$${find}\:\int\:{arctan}\left(\mathrm{1}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 67015    Answers: 0   Comments: 0

let f(x) =arctan(1+e^(−(√(1+x^2 ))) ) calculate f^′ (x) and f^(′′) (x). 1)find lim_(x→+∞) f(x) and lim_(x→−∞) f(x) 3)study the variation of f(x) 4)give the equation of tangent to C_f at A(1,f(1))

$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{1}+{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \right) \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:{and}\:{f}^{''} \left({x}\right). \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{variation}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{4}\right){give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}} \:{at}\:\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right) \\ $$

Question Number 67014    Answers: 0   Comments: 1

solve y^(′′) +x^2 y^′ =e^(−x) sin(3x)

$${solve}\:{y}^{''} +{x}^{\mathrm{2}} {y}^{'} ={e}^{−{x}} {sin}\left(\mathrm{3}{x}\right) \\ $$

Question Number 67013    Answers: 0   Comments: 1

find the value of Σ_(n=1) ^∞ (((−1)^n )/((n+1)n^3 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right){n}^{\mathrm{3}} } \\ $$

Question Number 67012    Answers: 0   Comments: 1

find ∫_1 ^(+∞) ((arctan([x]))/x^3 )dx

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\left[{x}\right]\right)}{{x}^{\mathrm{3}} }{dx} \\ $$

Question Number 67011    Answers: 0   Comments: 1

calculate U_n =∫_1 ^(+∞) ((arctan(n[x]))/x^2 )dx

$${calculate}\:{U}_{{n}} =\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({n}\left[{x}\right]\right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 67010    Answers: 0   Comments: 1

calculate Σ_(n=4) ^(+∞) (n/((n^2 −9)^2 ))

$${calculate}\:\:\sum_{{n}=\mathrm{4}} ^{+\infty} \:\:\:\:\frac{{n}}{\left({n}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} } \\ $$

Question Number 67008    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^2 )) with x>0 1) find a explicit form of (x) 2)find also g(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^3 )) 3)find the values of integrals ∫_0 ^∞ (dt/((t^2 +3)^2 )) and ∫_0 ^∞ (dt/((t^2 +3)^3 )) 4) calculate U_θ =∫_0 ^∞ (dt/((t^2 +cos^2 θ)^2 )) with 0<θ<(π/2) 5) find f^((n)) (x) and f^((n)) (0) 6) developp f at integr serie

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{U}_{\theta} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\:\:\:{with}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{5}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{6}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 67006    Answers: 0   Comments: 1

calculae A_n =∫_0 ^∞ (dx/((x^2 +1)^n )) with n integr natural and n>0

$${calculae}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{n}>\mathrm{0} \\ $$

Question Number 67005    Answers: 0   Comments: 1

find ∫ ((x−2(√(x^2 −1)))/(x+2(√(x^2 −1))))dx

$${find}\:\int\:\:\:\frac{{x}−\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}+\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx} \\ $$

Question Number 67004    Answers: 1   Comments: 0

Question Number 66995    Answers: 0   Comments: 4

Question Number 66988    Answers: 0   Comments: 0

Question Number 66986    Answers: 0   Comments: 1

Question Number 66985    Answers: 1   Comments: 0

The external length,width and height of an open rectangular container are 41cm,21cm and 15.5cm respectively. The thickness of the material making the container is 5mm.If the container has 8litres of water,calculate the internal height above the water level. Ans:5cm

$$\mathrm{The}\:\mathrm{external}\:\mathrm{length},\mathrm{width}\:\mathrm{and}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{open}\:\mathrm{rectangular}\:\mathrm{container}\:\mathrm{are} \\ $$$$\mathrm{41cm},\mathrm{21cm}\:\mathrm{and}\:\mathrm{15}.\mathrm{5cm}\:\mathrm{respectively}. \\ $$$$\mathrm{The}\:\mathrm{thickness}\:\mathrm{of}\:\mathrm{the}\:\mathrm{material}\:\mathrm{making} \\ $$$$\mathrm{the}\:\mathrm{container}\:\mathrm{is}\:\mathrm{5mm}.\mathrm{If}\:\mathrm{the}\:\mathrm{container} \\ $$$$\mathrm{has}\:\mathrm{8litres}\:\mathrm{of}\:\mathrm{water},\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{internal}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{water}\:\mathrm{level}. \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Ans}:\mathrm{5}{cm} \\ $$

Question Number 66981    Answers: 1   Comments: 1

Question Number 66980    Answers: 0   Comments: 1

Question Number 66979    Answers: 0   Comments: 1

Question Number 66959    Answers: 0   Comments: 0

Question Number 66938    Answers: 2   Comments: 7

Question Number 66937    Answers: 1   Comments: 0

Question Number 66932    Answers: 1   Comments: 0

which of the sequences converges ? 1) a_n = n−(1/n) 2) a_n = ((−1)^n +1)(((n+1)/n))

$${which}\:{of}\:{the}\:{sequences}\:{converges}\:? \\ $$$$\left.\mathrm{1}\right)\:{a}_{{n}} =\:{n}−\frac{\mathrm{1}}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{a}_{{n}} =\:\left(\left(−\mathrm{1}\right)^{{n}} +\mathrm{1}\right)\left(\frac{{n}+\mathrm{1}}{{n}}\right) \\ $$

Question Number 66928    Answers: 2   Comments: 0

(3^(120) /6^(60) ) express in your answer in 3 significant figure

$$\frac{\mathrm{3}^{\mathrm{120}} }{\mathrm{6}^{\mathrm{60}} } \\ $$$$\mathrm{express}\:\mathrm{in}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in} \\ $$$$\mathrm{3}\:\mathrm{significant}\:\mathrm{figure} \\ $$

Question Number 66927    Answers: 0   Comments: 0

calcul la limite suivante: lim (((1^x +2^x +3^x +......+n^x )/n))^(1/x) =A x→0 trouve la valeur de A trouve la valeur de P definir par: P=(A/((((n! ))^(1/n) )^((n−1)) ))=???

$${calcul}\:{la}\:{limite}\:{suivante}: \\ $$$${lim}\:\:\:\:\:\:\:\left(\frac{\mathrm{1}^{{x}} +\mathrm{2}^{{x}} +\mathrm{3}^{{x}} +......+{n}^{{x}} }{{n}}\right)^{\frac{\mathrm{1}}{{x}}} =\mathrm{A} \\ $$$${x}\rightarrow\mathrm{0} \\ $$$$\mathrm{trouve}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\boldsymbol{\mathrm{A}} \\ $$$$\mathrm{trouve}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\boldsymbol{\mathrm{P}}\:\mathrm{definir}\:\mathrm{par}: \\ $$$$\boldsymbol{\mathrm{P}}=\frac{\boldsymbol{\mathrm{A}}}{\left(\sqrt[{\mathrm{n}}]{\mathrm{n}!\:}\right)^{\left(\mathrm{n}−\mathrm{1}\right)} }=??? \\ $$

Question Number 66922    Answers: 0   Comments: 1

Question Number 66910    Answers: 0   Comments: 1

P = Σ_(n=1) ^(999) (1/((2n−1)(2n))) Q = Σ_(n=1) ^(999) (1/((999+n)(1999−n))) (P/Q) = ?

$${P}\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)} \\ $$$${Q}\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{999}+{n}\right)\left(\mathrm{1999}−{n}\right)} \\ $$$$\frac{{P}}{{Q}}\:\:=\:\:? \\ $$

  Pg 1435      Pg 1436      Pg 1437      Pg 1438      Pg 1439      Pg 1440      Pg 1441      Pg 1442      Pg 1443      Pg 1444   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com