Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1440
Question Number 67959 Answers: 0 Comments: 1
$$\int\sqrt{{e}^{{y}^{\mathrm{2}} } \:\:}\:{dy}\:\:{pleas}\:{sir}\:{can}\:{you}\:{help}\:{me}? \\ $$
Question Number 67958 Answers: 0 Comments: 0
$$\: \\ $$$$\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}} {\boldsymbol{\mathrm{lim}}}\left(\frac{\mathrm{7}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{256}\right)}} −\mathrm{49}}{\mathrm{2}^{−\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} }} −\frac{\mathrm{1}}{\mathrm{4}}}\right)\:\approx\:? \\ $$$$\: \\ $$
Question Number 67948 Answers: 0 Comments: 0
Question Number 67946 Answers: 0 Comments: 3
$$\mathrm{use}\:\boldsymbol{\mathrm{Green}}−\boldsymbol{\mathrm{Riemann}}\:\boldsymbol{\mathrm{formuler}} \\ $$$$\mathrm{to}\:\mathrm{determined}: \\ $$$$\boldsymbol{\mathrm{I}}=\int\int_{\boldsymbol{\mathrm{D}}} \boldsymbol{\mathrm{xy}}\mathrm{dxdy} \\ $$$$\boldsymbol{\mathrm{D}}=\left\{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{x}\geqslant\mathrm{0};\mathrm{y}\geqslant;\mathrm{x}+{y}\leqslant\mathrm{1}\right\} \\ $$
Question Number 67943 Answers: 0 Comments: 0
Question Number 67942 Answers: 0 Comments: 1
$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} \:\:{dy} \\ $$
Question Number 67939 Answers: 1 Comments: 2
Question Number 67937 Answers: 0 Comments: 1
Question Number 67932 Answers: 1 Comments: 4
$${let}\:{A}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{4}} −{e}^{{i}\theta} \right)}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}\left(\theta\right)\:{interms}\:{of}\:\theta \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{4}} −{e}^{{i}\theta} \right)^{\mathrm{2}} } \\ $$
Question Number 67931 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{x}^{{n}} \left\{\mathrm{1}+{cosx}\:+{cos}\left(\mathrm{2}{x}\right)\right\}^{\mathrm{2}} {dx} \\ $$$${find}\:{a}\:{relation}\:{of}\:{recurrence}\:{betwedn}\:{the}\:{A}_{{n}} \\ $$
Question Number 67927 Answers: 0 Comments: 9
$$\mathrm{Tinku}\:\mathrm{Tara},\mathrm{the}\:\mathrm{developer}. \\ $$$$\mathrm{Sir}, \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{receive}\:\mathrm{notifications}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{forum}.\mathrm{Pl}\:\mathrm{fix}\:\mathrm{the}\:\mathrm{problem}. \\ $$
Question Number 67919 Answers: 0 Comments: 0
Question Number 67918 Answers: 1 Comments: 0
Question Number 68226 Answers: 0 Comments: 1
$$\mathrm{We}\:\mathrm{are}\:\mathrm{working}\:\mathrm{on}\:\mathrm{problems} \\ $$$$\mathrm{reported}\:\mathrm{on}\:\mathrm{post}\:\mathrm{67927}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{update}\:\mathrm{on}\:\mathrm{the}\:\mathrm{resolution} \\ $$$$\mathrm{as}\:\mathrm{soon}\:\mathrm{as}\:\mathrm{possible}. \\ $$
Question Number 67921 Answers: 0 Comments: 0
$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} {dy} \\ $$
Question Number 67920 Answers: 0 Comments: 0
Question Number 67907 Answers: 1 Comments: 1
Question Number 67903 Answers: 2 Comments: 0
Question Number 67902 Answers: 0 Comments: 0
$${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$
Question Number 67900 Answers: 0 Comments: 0
$${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$
Question Number 67899 Answers: 1 Comments: 2
$${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$
Question Number 67898 Answers: 0 Comments: 0
$$ \\ $$$${differential}\:{equation}. \\ $$$${homogenous}. \\ $$$$ \\ $$$${ydx}+\left(\mathrm{2}{x}+\mathrm{3}{y}\right){dy}=\mathrm{0} \\ $$$$ \\ $$
Question Number 67881 Answers: 1 Comments: 0
$${find}\:{all}\:{x},{y}\:\in{R}\:{such}\:{that} \\ $$$$\left({x}+{yi}\right)^{\mathrm{2019}} ={x}−{yi} \\ $$
Question Number 67871 Answers: 1 Comments: 1
$$\mathrm{8}=\mathrm{4x} \\ $$$$\mathrm{x}=? \\ $$
Question Number 67860 Answers: 1 Comments: 3
Question Number 67852 Answers: 1 Comments: 4
Pg 1435 Pg 1436 Pg 1437 Pg 1438 Pg 1439 Pg 1440 Pg 1441 Pg 1442 Pg 1443 Pg 1444
Terms of Service
Privacy Policy
Contact: info@tinkutara.com