Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1436

Question Number 60901    Answers: 1   Comments: 0

find ∫ arctan((1/(1+x^2 )))dx

$${find}\:\int\:\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\: \\ $$

Question Number 60894    Answers: 0   Comments: 0

study the convergence of ∫_0 ^1 (((√(1+2x))−(√(1+x)))/(ln(1+x)))dx and determine its value.

$${study}\:{the}\:{convergence}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}+\mathrm{2}{x}}−\sqrt{\mathrm{1}+{x}}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\:{and}\:{determine}\:{its} \\ $$$${value}. \\ $$

Question Number 60893    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) (dx/((√2)cos^2 x +(√3)sin^2 x))

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\sqrt{\mathrm{2}}{cos}^{\mathrm{2}} {x}\:+\sqrt{\mathrm{3}}{sin}^{\mathrm{2}} {x}} \\ $$

Question Number 60910    Answers: 1   Comments: 7

Question Number 60888    Answers: 1   Comments: 1

Question Number 60873    Answers: 2   Comments: 5

Question Number 60881    Answers: 0   Comments: 3

∫_(−π) ^π sin((1/(1−x^2 ))) dx

$$\underset{−\pi} {\overset{\pi} {\int}}{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)\:{dx} \\ $$

Question Number 60862    Answers: 0   Comments: 0

Question Number 60854    Answers: 2   Comments: 4

(x^4 −3x^2 +2x+1)/(x−1)

$$\left({x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)/\left({x}−\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$

Question Number 60853    Answers: 2   Comments: 0

(√(5−12i))+(√(5+12i))=?

$$\sqrt{\mathrm{5}−\mathrm{12}{i}}+\sqrt{\mathrm{5}+\mathrm{12}{i}}=? \\ $$

Question Number 60849    Answers: 1   Comments: 5

For all θ in [0, π/2] show that cos(sinθ)≥sin(cosθ).

$${For}\:{all}\:\theta\:{in}\:\left[\mathrm{0},\:\pi/\mathrm{2}\right]\:{show}\:{that}\:{cos}\left({sin}\theta\right)\geqslant{sin}\left({cos}\theta\right). \\ $$

Question Number 61612    Answers: 0   Comments: 7

Question Number 60817    Answers: 4   Comments: 2

V=(4/3)𝛑R^3 prove

$$\boldsymbol{\mathrm{V}}=\frac{\mathrm{4}}{\mathrm{3}}\boldsymbol{\pi\mathrm{R}}^{\mathrm{3}} \:\:\:\boldsymbol{\mathrm{prove}} \\ $$

Question Number 60816    Answers: 1   Comments: 0

S=4𝛑R^2 prove

$$\boldsymbol{\mathrm{S}}=\mathrm{4}\boldsymbol{\pi\mathrm{R}}^{\mathrm{2}} \:\:\:\boldsymbol{\mathrm{prove}} \\ $$

Question Number 60814    Answers: 1   Comments: 0

find x given that 9^(sin^2 x) +9^(cos^2 x) =2

$${find}\:{x}\:{given}\:{that} \\ $$$$\mathrm{9}^{{sin}^{\mathrm{2}} {x}} +\mathrm{9}^{{cos}^{\mathrm{2}} {x}} =\mathrm{2}\: \\ $$$$ \\ $$

Question Number 60812    Answers: 0   Comments: 5

Question Number 60797    Answers: 0   Comments: 2

∫(e^w /w^(n+1) )dw, n∈N

$$\int\frac{{e}^{{w}} }{{w}^{{n}+\mathrm{1}} }{dw},\:{n}\in\mathbb{N} \\ $$

Question Number 60791    Answers: 1   Comments: 2

∫(e^n /x^(n+1) )dx, n∈N

$$\int\frac{{e}^{{n}} }{{x}^{{n}+\mathrm{1}} }{dx},\:\mathrm{n}\in\mathbb{N} \\ $$

Question Number 60788    Answers: 2   Comments: 1

Question Number 60783    Answers: 0   Comments: 2

∫_(−∞) ^∞ sin((1/(1+x^2 ))) dx

$$\underset{−\infty} {\overset{\infty} {\int}}{sin}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{dx} \\ $$

Question Number 60775    Answers: 0   Comments: 1

Question Number 60765    Answers: 0   Comments: 2

express in partial fraction 14/(x^2 +3)(x+2)

$${express}\:{in}\:{partial}\:{fraction}\:\mathrm{14}/\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}+\mathrm{2}\right) \\ $$

Question Number 60756    Answers: 1   Comments: 1

express in partial fraction 5/(x−2)(x+3)^2

$${express}\:{in}\:{partial}\:{fraction}\:\mathrm{5}/\left({x}−\mathrm{2}\right)\left({x}+\mathrm{3}\right)^{\mathrm{2}} \\ $$

Question Number 60748    Answers: 1   Comments: 1

Question Number 60745    Answers: 4   Comments: 5

Question Number 60739    Answers: 1   Comments: 4

evaluate i.∫ (((x+1)/(x−1)))dx ii. ∫_0 ^π (2cosxsinx)dx iii. ∫_((π/(3 )) ) ^π (((sin2x)/(cos2x)))dx

$${evaluate}\:\: \\ $$$${i}.\int\:\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx} \\ $$$${ii}.\:\:\int_{\mathrm{0}} ^{\pi} \left(\mathrm{2}{cosxsinx}\right){dx}\:\: \\ $$$${iii}.\:\:\int_{\frac{\pi}{\mathrm{3}\:}\:} ^{\pi} \left(\frac{{sin}\mathrm{2}{x}}{{cos}\mathrm{2}{x}}\right){dx} \\ $$

  Pg 1431      Pg 1432      Pg 1433      Pg 1434      Pg 1435      Pg 1436      Pg 1437      Pg 1438      Pg 1439      Pg 1440   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com