Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1436

Question Number 67025    Answers: 0   Comments: 3

Question Number 67023    Answers: 1   Comments: 1

find the sequence U_n wich verify U_n +U_(n+1) =sin(n) ∀n from n

$${find}\:{the}\:{sequence}\:{U}_{{n}} \:{wich}\:{verify}\:\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} ={sin}\left({n}\right)\:\:\forall{n}\:{from}\:{n} \\ $$

Question Number 67022    Answers: 0   Comments: 0

find ∫ (1+(√x))(√(x^2 +3))dx

$${find}\:\int\:\left(\mathrm{1}+\sqrt{{x}}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$

Question Number 67021    Answers: 0   Comments: 1

find f(x) =∫_0 ^1 ln(x +e^(−t) )dt with x>0

$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\:+{e}^{−{t}} \right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 67020    Answers: 0   Comments: 1

find f(x) = ∫_0 ^1 arctan(1+xt)dt with x real

$${find}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left(\mathrm{1}+{xt}\right){dt}\:\:{with}\:{x}\:{real} \\ $$

Question Number 67019    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−x^2 ) arctan(x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$

Question Number 67018    Answers: 0   Comments: 1

find ∫_0 ^∞ e^(−x) ln(1+x)dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$

Question Number 67017    Answers: 0   Comments: 1

find ∫ arctan(1+(√(x+1)))dx

$${find}\:\int\:\:{arctan}\left(\mathrm{1}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 67016    Answers: 0   Comments: 0

find ∫ arctan(1+(√x)+(√(x+1)))dx

$${find}\:\int\:{arctan}\left(\mathrm{1}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$

Question Number 67015    Answers: 0   Comments: 0

let f(x) =arctan(1+e^(−(√(1+x^2 ))) ) calculate f^′ (x) and f^(′′) (x). 1)find lim_(x→+∞) f(x) and lim_(x→−∞) f(x) 3)study the variation of f(x) 4)give the equation of tangent to C_f at A(1,f(1))

$${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{1}+{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \right) \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:{and}\:{f}^{''} \left({x}\right). \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{variation}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{4}\right){give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}} \:{at}\:\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right) \\ $$

Question Number 67014    Answers: 0   Comments: 1

solve y^(′′) +x^2 y^′ =e^(−x) sin(3x)

$${solve}\:{y}^{''} +{x}^{\mathrm{2}} {y}^{'} ={e}^{−{x}} {sin}\left(\mathrm{3}{x}\right) \\ $$

Question Number 67013    Answers: 0   Comments: 1

find the value of Σ_(n=1) ^∞ (((−1)^n )/((n+1)n^3 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right){n}^{\mathrm{3}} } \\ $$

Question Number 67012    Answers: 0   Comments: 1

find ∫_1 ^(+∞) ((arctan([x]))/x^3 )dx

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\left[{x}\right]\right)}{{x}^{\mathrm{3}} }{dx} \\ $$

Question Number 67011    Answers: 0   Comments: 1

calculate U_n =∫_1 ^(+∞) ((arctan(n[x]))/x^2 )dx

$${calculate}\:{U}_{{n}} =\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({n}\left[{x}\right]\right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 67010    Answers: 0   Comments: 1

calculate Σ_(n=4) ^(+∞) (n/((n^2 −9)^2 ))

$${calculate}\:\:\sum_{{n}=\mathrm{4}} ^{+\infty} \:\:\:\:\frac{{n}}{\left({n}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} } \\ $$

Question Number 67008    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^2 )) with x>0 1) find a explicit form of (x) 2)find also g(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^3 )) 3)find the values of integrals ∫_0 ^∞ (dt/((t^2 +3)^2 )) and ∫_0 ^∞ (dt/((t^2 +3)^3 )) 4) calculate U_θ =∫_0 ^∞ (dt/((t^2 +cos^2 θ)^2 )) with 0<θ<(π/2) 5) find f^((n)) (x) and f^((n)) (0) 6) developp f at integr serie

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{U}_{\theta} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\:\:\:{with}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{5}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{6}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Question Number 67006    Answers: 0   Comments: 1

calculae A_n =∫_0 ^∞ (dx/((x^2 +1)^n )) with n integr natural and n>0

$${calculae}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{n}>\mathrm{0} \\ $$

Question Number 67005    Answers: 0   Comments: 1

find ∫ ((x−2(√(x^2 −1)))/(x+2(√(x^2 −1))))dx

$${find}\:\int\:\:\:\frac{{x}−\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}+\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx} \\ $$

Question Number 67004    Answers: 1   Comments: 0

Question Number 66995    Answers: 0   Comments: 4

Question Number 66988    Answers: 0   Comments: 0

Question Number 66986    Answers: 0   Comments: 1

Question Number 66985    Answers: 1   Comments: 0

The external length,width and height of an open rectangular container are 41cm,21cm and 15.5cm respectively. The thickness of the material making the container is 5mm.If the container has 8litres of water,calculate the internal height above the water level. Ans:5cm

$$\mathrm{The}\:\mathrm{external}\:\mathrm{length},\mathrm{width}\:\mathrm{and}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{open}\:\mathrm{rectangular}\:\mathrm{container}\:\mathrm{are} \\ $$$$\mathrm{41cm},\mathrm{21cm}\:\mathrm{and}\:\mathrm{15}.\mathrm{5cm}\:\mathrm{respectively}. \\ $$$$\mathrm{The}\:\mathrm{thickness}\:\mathrm{of}\:\mathrm{the}\:\mathrm{material}\:\mathrm{making} \\ $$$$\mathrm{the}\:\mathrm{container}\:\mathrm{is}\:\mathrm{5mm}.\mathrm{If}\:\mathrm{the}\:\mathrm{container} \\ $$$$\mathrm{has}\:\mathrm{8litres}\:\mathrm{of}\:\mathrm{water},\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{internal}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{water}\:\mathrm{level}. \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Ans}:\mathrm{5}{cm} \\ $$

Question Number 66981    Answers: 1   Comments: 1

Question Number 66980    Answers: 0   Comments: 1

Question Number 66979    Answers: 0   Comments: 1

  Pg 1431      Pg 1432      Pg 1433      Pg 1434      Pg 1435      Pg 1436      Pg 1437      Pg 1438      Pg 1439      Pg 1440   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com